Методи згладжування та корекції зображень
1. Методи згладжування зображень
Оператори згладжування. Якщо зображення пошкоджене широкополосним сигналом завади (шуми датчика, передачі, квантування та ін.), виникають дрібноструктурні флуктуації яскравості, які, зазвичай, можуть бути усунуті за допомогою локальних операторів згладжування (низькочастотних фільтрів). Анізотропні періодичні перекручування в зображенні, навпаки, зазвичай усуваються в частотному просторі (наприклад, ліквідація 50-герцової перешкоди в зображенні здійснюється шляхом фільтрації складової 50 Гц зі спектра).
Поряд з лінійним згладжуванням, що не забезпечує збереження контурів, що часто неприпустимо, застосовують й інші методи:
- нелінійні оператори згладжування (MINIMUM-, MEDIAN-, MAXIMUM-оператори);
- граничне згладжування;
- сигнально-адаптивні оператори згладжування;
- нагромадження зображень (усереднення декількох зображень);
- лінійну і нелінійну фільтрацію зображень у частотно-просторовій області (НЧ-фільтри, Pruning-фільтр, гомоморфну фільтрацію).
Низькочастотні оператори з усередненням. Для утамування шуму часто застосовуються фільтри, що використовують такі віконні оператори:
; .
Функція здійснює усереднення для всіх елементів, які потрапили у вікно. За допомогою функції завдяки великим вагам підкреслюються горизонтальні і вертикальні лінії. Якщо необхідно підкреслити діагональні лінії, доцільно застосовувати віконну функцію вигляду:
.
Коефіцієнт віконних функцій, що нормує, вибирається таким чином, щоб процедура заглушення шуму не викликала зміщення середньої інтенсивності обробленого зображення.
Цей лінійний оператор усереднення обчислює в локальному вікні середню величину для поточного елемента зображення з урахуванням стану сусідніх елементів. Кожна точка результуючого зображення обчислюється як . Наприклад, для маски розміром 3 ´ 3 ( ) одержимо
,
а для маски 5´5 :
Недолік таких прямокутних фільтрів полягає у можливій появі помилкового зображення (aliasing), коли в зображенні є високі просторові частоти.
Істотним недоліком лінійної фільтрації зображень є те, що поряд зі зменшенням шумів одночасно відбувається розмивання контурів зображення. Це викликано тим, що всі елементи вихідного зображення обробляються з однаковим коефіцієнтом, тобто лінійні фільтри незалежні від структури елементів і тому вони не можуть визначити межу між шумовими і контурними елементами.
Щоб зменшити розмивання зображення, доцільно використовувати метод селективного згладжування. У ряді випадків, якщо яскравість пікселів вхідного зображення розподілена за нормальним законом, достатньо ефективною під час проведення попередньої обробки може виявитися сигма-фільтрація, при якій враховуються тільки ті елементи вхідного зображення (всередині вікна), яскравість яких знаходиться в межах . Тут Ех –математичне очікування, а s – середньоквадратичне відхилення яскравості пікселів зображення.
2. Підкреслення контурів
Підкреслення контурів низькочастотним оператором. Підкреслення і загострення контурів або збільшення різкості зображення відбувається внаслідок збільшення високочастотних складових сигналу, до яких відносяться не тільки компоненти контурів і меж, але і шум. ............