Содержание Задание 1.Определить МДНФ логической функции устройства.
1.1 Составить таблицу соответствия (истинности) функции.
1.2 Перевести логическую функцию от табличной к аналитической форме в виде ДСНФ
1.3 Найти МДНФ различными методами.
1.3.1прямым (алгебраическим) преобразованием;
1.3.2методом Квайна;
1.3.3усовершенствованным методом Квайна (Квайна-Маккласки);
1.3.4методом карт Карно;
1.3.5методом неопределенных коэффициентов;
Задание 2. Составить алгоритм метода минимизации
2.1 Составить содержательный (словесный) алгоритм минимизации функции, разработать граф-схему алгоритма, разработать логическую схему алгоритма в нотации Ляпунова для метода Квайна.
2.2 Составить содержательный (словесный) алгоритм минимизации функции, разработать граф-схему алгоритма, разработать логическую схему алгоритма в нотации Ляпунова для метода минимального покрытия Петрика.
2.3 Разработать рабочие программы по алгоритмам.
Задание 3. Синтез схемы логического устройства.
3.1 Выполнить синтез схемы по ДСНФ и МДНФ в базисе Буля с использованием двухвходовых логических элементов и интегральных микросхем серии 155.
3.2 Функцию МДНФ в базисе Буля полученную в первом задании представить в базисах Шеффера и Пирса.
3.3 Обосновать выбор базиса по формулам МДНФ.
3.4 Реализовать в выбранном базисе логическую схему.
Задание 1.
1.1 Составить таблицу соответствия (истинности) функции.
Составим таблицу истинности для заданной функции
F(
X1,X2,X3,X4).
№
X1
X2
X3
X4
F(X1, X2, X3, X4)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
0
1
1
1
0
0
1
1
0
0
0
1
Матрицу ДСНФ получают путем удаления тех строк, где функция равна нулю. Для нашего случая получим:
№
X1
X2
X3
X4
0
2
3
5
6
7
10
11
15
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
1
0
1
1
0
1
1
1
1
1
0
0
1
1
0
1
0
1
1
1.2 Перевести логическую функцию от табличной к аналитической форме в виде ДСНФ.
Переведем логическую функцию от табличной к аналитической форме в виде ДСНФ.
F(X1X2X3X4) = X1X2X3X4 V X1X2X3X4 V X1X2X3X4 V X1X2X3X4 V X1X2X3X4
V X1X2X3X4 V X1X2X3X4 V X1X2X3X4 V X1X2X3X4.
1.3 Найти МДНФ различными методами.
1.3.1 Метод эквивалентных преобразований.
В основе метода минимизации булевых функций эквивалентными преобразованиями лежит последовательное использование законов булевой алгебры. ............