Часть полного текста документа:МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ Кафедра РЭС (РТС) КОНТРОЛЬНАЯ РАБОТА По курсу "Методы проектирования и оптимизации РЭA" Вариант №7 Выполнил: ст.гр. РТз - 98 - 1 Чернов В.В. Шифр 8209127 Проверил: Карташов В. И. ____________________ Харьков 2003 Задание 1. Выполнить моделирование на ЭВМ базовой случайной величины (БСВ) Х. Получить выборки реализаций БСВ объемом n = 170, 1700. Для каждого случая найти минимальное и максимальное значения, оценить математическое ожидание и дисперсию. Сравнить полученные числовые характеристики с теоретическими значениями. Решение Базовой называют случайную величину, равномерно распределенную на интервале (0,1). Моделирование производится при помощи функции rnd(m) пакета MathCad 2000, возвращающей значение случайной величины, равномерно распределенной в интервале 0xm. а) для выборки объемом 170 (рис. 1.1): Xmin = 0.0078, Xmax = 0.996. Первый начальный момент (математическое ожидание) равен среднему арифметическому значений выборки: МХ = 0.502 , (1.1) второй центральный момент (дисперсия): D = 0.086 , (1.2) среднеквадратичное отклонение: ? = 0.293 . (1.3) Рисунок 1.1 Выборка объемом 170. Для выборки объемом 1700 (рис. 1.2): Xmin = 0.0037, Xmax = 0.998, МХ = 0.505 , (1.4) D = 0.085 , (1.5) ????????????? ?????????????????????????????????????????????????????????????? = 0.292 . (1.6) Рисунок 1.2 Выборка объемом 1700. Теоретически значения математического ожидания и дисперсии БСВ рассчиты-ваются из определения плотности распределения вероятности: pравн(x) = , (1.7) математическое ожидание: Mx = 0.5 , (1.8) дисперсия: Dx = =0.083 , (1.9) что хорошо совпадает с результатами моделирования (1.1) - (1.5). Задание 2. Получить выборку реализаций БСВ объемом n = 1700. Построить гистограмму распределений и сравнить ее с плотностью распределения равномерно распределенной случайной величины. Решение а) выборка получается аналогично Заданию 1(рис. 2.1): Рисунок 2.1 Выборка объемом 1700 Приняв Xmin = 0, Xmax = 1, разбиваем интервал на q = 10 равных промежутков, каждый из которых равен: ?X = . (2.1) Количества выборок, попадающих в каждый из интервалов, частоты попадания, оценки плотности сведены в табл. 2.1. Гистограмма распределений представлена на рис. 2.2. Как видно, она достаточно хорошо совпадает с равномерным законом распределения (1.7). Таблица 2.1 Результаты оценки плотности распределения Номеринтер-вала 1 2 3 4 5 6 7 8 9 10 Диапа-зон значе-ний 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 Коли-чество попа-даний 151 174 149 189 190 161 166 182 177 161 Часто-та по-пада-ния Pi 0.089 0.102 0.088 0.111 0.112 0.095 0.098 0.107 0.104 0.095 Оцен-ка плот-ности pi 0.888 1.024 0.876 1.112 1.118 0.947 0.976 1.071 1.041 0.947 Рисунок 2.2 Гистограмма распределений Задание 3. Получить выборку БСВ объемом n = 1700, По этой выборке проверить свойства независимости полученной случайной последовательности (вычислить 10 значений коэффициента корреляции). Решение а) снова получим выборку значений БСВ объемом n = 1700 (рис. 3.1): Рисунок 3.1 Выборка объемом 1700 б) значения математического ожидания и дисперсии: M = 0.512 , (3.1) D = 0.088 . ............ |