Часть полного текста документа:Модель диалога человека-преподавателя контролирует деятельность в AutoTutor Natalie K. Person, Arthur S. Graesser, Roger J. Kreuz, Victoria Pomeroy и группа исследования преподавания Цель этой работы заключается в том, чтобы показать, как преобладающие особенности успешного взаимодействия человека- преподавателя могут быть интегрированы в педагогическом агенте - AutoTutor. AutoTutor - это полностью автоматизированная обучающая система, которая моделирует шаги диалога квалифицированного преподавателя в ответ на вводимые обучаемым исходные данные. В основе процесса моделирования лежит пяти-шаговая структура, редко используемая обычными преподавателями. Мы оценивали AutoTutor как эффективную обучающую систему и как собеседника во время занятий с виртуальными студентами различного уровня способностей. По результатам оценок трех циклов занятий было выявлено следующее: (1) AutoTutor приспособлен к эффективному с педагогической точки зрения диалогу, имитирующему шаги диалога преподавателя; (2) AutoTutor - достаточно эффективный собеседник. Введение За последнее десятилетие появилось несколько исследований, в которых была сделана попытка раскрыть механизм преподавания, отвечающий за приобретение студентами знании. В научных работах приводилось много данных по анализу совместных диалогов (collaborative discourse), возникающих на лекциях между студентами и преподавателями (Fox, 1993; Graesser & Person, 1994; Graesser, Person & Magliano, 1995; Hume, Michael, Rovick & Evens,1996; McArthur, Stasz, & Zmuidzinas, 1990; Merrill, Reiser, Ranney, & Trafton, 1992; Moore, 1995; Graesser & Person, 1999; Person, Graesser, Magliano & Kreuz, 1994; Person, Kreuz, Zwaan & Graesser, 1995; Putnam, 1987). Например, мы узнали, что занятия в основном контролируются преподавателем, т.е. преподаватели, а не студенты, обычно определяют, когда и какие темы будут охвачены на занятии. Кроме того, мы знаем, что преподаватели редко используют в работе сложные или "идеальные" модели преподавания, которые часто включаются в состав интеллектуальных обучающих систем. Взамен преподаватели больше любят полагаться на локальные стратегии, которые возникают при общении. Хотя многие обнаруженные факты, как, например, эти, делают процесс преподавания ярче, они представляют значительную проблему для создателей интеллектуальных обучающих систем. В конце концов, создание умного собеседника - немалый подвиг. Однако если авторы будущих обучающих систем пожелают систематизировать знания, полученные при изучении преподавания, следующее поколение обучающих систем будет включать в себя педагогических агентов, которые займутся обучающим диалогом. Цель этой статьи двойная. Во-первых, мы хотим показать, как основные черты квалифицированного преподавания могут быть включены в обучающую систему - AutoTutor. Во-вторых, мы предоставим данные нескольких предварительных испытаний оценок качества, в ходе которых AutoTutor взаимодействует с виртуальными студентами с различным уровнем способностей. AutoTutor - это полностью автоматизированная обучающая система, которая была разработана группой исследования преподавания. AutoTutor - это действующая система, которая делает попытку понять обычный студенческий язык, а затем сообщить студенту исходные данные путем моделирования живого диалога преподавателя. AutoTutor отличается от остальных систем, общающихся на естественном языке по многим признакам. Во-первых, AutoTutor не ограничивает вводимые на обычном языке данные студента, как остальные обучающие системы (например, Adele (Shaw, Johnson & Ganeshan, 1999); Ymir agenta (Cassell & Thorisson, 1999); Cirscim-Tutor (Hume, Michael, Rovick & Evens, 1996; Zhou et al, 1999); Atlas (Freedman, 1999); and Basic Electricity and Electronics (Moore, 1995; Rose, Di Eugenio & Moore,1999)). ............ |