Федеральное агентство по образованию
ГОУ "Ульяновский государственный педагогический университет им. И. Н. Ульянова"
Кафедра математического анализа
"Некоторые уравнения математической физики в частных производных"
Ульяновск, 2008 г.
Содержание
Введение
Глава 1. Уравнения гиперболического типа
1.1 Задачи, приводящие к уравнениям гиперболического типа
1.2 Уравнение колебаний струны
1.3 Метод разделения переменных. Уравнение свободных колебаний струны
1.4 Решение уравнений
Глава 2. Уравнения параболического типа
2.1 Уравнение распространения тепла в стержне
2.2 Решение задач
Заключение
Литература
Введение Изучением дифференциальных уравнений в частных производных занимается математическая физика. Основы теории этих уравнений впервые были изложены в знаменитом "Интегральном исчислении" Л. Эйлера.
Классические уравнения математической физики являются линейными. Особенность линейных уравнений состоит в том, что если U и V – два решения, то функция aU + bV при любых постоянных a и b снова является решением. Это обстоятельство позволяет построить общее решение линейного дифференциального уравнения из фиксированного набора его элементарных решений и упрощает теорию этих уравнений.
Современная общая теория дифференциальных уравнений занимается главным образом линейными уравнениями и специальными классами нелинейных уравнений. Основным методом решения нелинейных дифференциальных уравнений в частных производных выступает численное интегрирование.
Круг вопросов математической физики тесно связан с изучением различных физических процессов. Сюда относятся явления, изучаемые в гидродинамике, теории упругости, электродинамике и т.д. Возникающие при этом математические задачи содержат много общих элементов и составляют предмет математической физики.
Постановка задач математической физики, будучи тесно связанной с изучением физических проблем, имеет свои специфические черты. Так, например, начальная и конечная стадии процесса носят качественно различный характер и требуют применения различных математических методов.
Круг вопросов, относящихся к математической физике, чрезвычайно широк. В данной работе рассматриваются задачи математической физики, приводящие к уравнениям с частными производными.
Расположение материала соответствует основным типам уравнений. Изучение каждого типа уравнений начинается с простейших физических задач, приводящих к уравнениям рассматриваемого типа.
Глава 1. Уравнения гиперболического типа 1.1 Задачи, приводящие к уравнениям гиперболического типа
Уравнения с частными производными 2-го порядка гиперболического типа наиболее часто встречаются в физических задачах, связанных с процессами колебаний. Простейшее уравнение гиперболического типа
называется волновым уравнением. К исследованию этого уравнения приводит рассмотрение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводе, крутильных колебаний вала, колебаний газа и т.д.
1.2 Уравнение колебаний струны В математической физике под струной понимают гибкую, упругую нить. ............