Министерство образования и науки РФ
Череповецкий государственный университет
Институт информационных технологий
Кафедра прикладной математики
Дисциплина: Геометрия и алгебра
Курсовая работа
на тему «Некоторые замечательные кривые»
г. Череповец
2010-2011 уч.г.
Содержание
Введение
1. Строфоида
1.1 Определение
1.2 Исторические сведения
1.3 Стереометрическое образование
1.4 Особенности формы
1.5 Задача
2. Циссоида Диокла
2.1 Определение и построение
2.2 Исторические сведения
2.3 Площадь S полосы
2.4 Объем V тела вращения
2.5 Задача
3. Декартов лист
3.1 Исторические сведения
3.2 Построение
3.3 Особенности формы
3.4 Задача
4. Улитка Паскаля
4.1 Определение и построение
4.2 Исторические сведения
4.3 Особенности формы
4.4 Свойства нормали
4.5 Построение касательной
4.5 Задача
5. Лемниската Бернулли
5.1 Определение
5.2 Исторические сведения
5.3 Построение
5.4 Особенности формы
5.5 Свойства нормали
5.6 Построение касательной
5.7 Задача
Заключение
Используемая литература
Введение
В данной работе мы рассмотрим некоторые замечательные кривые и их особенности.
В параграфе 1 будет рассмотрена строфоида, особенности её формы, стереометрическое образование и исторические сведения.
Во 2-м параграфе мы изучим циссоиду Диокла и некоторые формулы, связанные с ней.
В параграфе 3 узнаем метод построения, особенности формы и исторические сведения о кривой, называемой «Декартов лист».
В 4-м параграфе рассмотрим улитку Паскаля. Её определение, построение, особенности формы, свойства нормали и построение касательной. плоский кривой лемниската бернули строфоида
В параграфе 5 будет изучена лемниската Бернулли: определение, построение, исторические сведения, особенности формы, свойства нормали и построение касательной.
А также при помощи задач узнаем формулы кривых в прямоугольной декартовой и полярной системах координат.
1. Строфоида
1.1 Определение.
Прямая строфоида, или просто строфоида, определяется так: берём взаимно-перпендикулярные прямые AB, CD (рис.1) и на одной из них точку A; через неё проводим произвольую прямую AL, пересекающую CD в точке P. На AL откладываем отрезки PM1,, PM2 равные PO (O – точка пересечения AB и CD). Строфоида (прямая) есть геометрическое место точек M1,M2.
Косая строфоида (рис.2) строится аналогично с той разницей, что AB и CD пересекаются косоугольно.
1.2 История вопроса
Строфоида была рассмотрена (вероятно, впервые) Ж. Робервалем в 1645 г. под именем птероиды. Нынешнее название введено Миди в 1849 г.
1.3 Стереометрическое образование
Представим себе цилиндрическую поверхность с осью CD (см. рис.1) и радиусом AO. Через точку A проведем перпендикулярную плоскости чертежа произвольную плоскость K (прямая AL – след этой плоскости). В сечении получим эллипс; его фокусы M1, M2 описывают прямую строфоиду.
Косая строфоида строится аналогично с той лишь разницей, что цилиндрическая поверхность заменяется конической: ось конуса (OS на рис.2) проходит через O перпендикулярно AB; прямая UV, проходящая через B параллельно CD, – одна из образующих. ............