Задание 1. Нейронные сети
Две базовые архитектуры компьютеров - последовательная обработка символов по заданной программе и параллельное распознавание образов по обучающим примерам - появились практически одновременно.
Концептуально они оформились в 30-40-х годах. Первая - в теоретической работе Тьюринга 1936 г., предложившего гипотетическую машину для формализации понятия вычислимой функции, и затем уже в практической плоскости - обобщившего уроки создания первой ЭВМ ENIAC и предложившего методологию конструирования машин с запоминаемыми программами (ENIAC программировался штекерами). Так, в качестве базовых элементов ЭВМ фон Нейман предложил модифицированные формальные нейроны Мак-Каллока и Питтса - основателей нейросетевой архитектуры.
Что касается нейросетевой архитектуры, то, несмотря на многочисленные реверансы в сторону нейронных сетей со стороны классиков кибернетики, их влияние на промышленные разработки вплоть до недавнего времени было минимальным. Хотя в конце 50-х - начале 60-х с этим направлением связывали большие надежды, в основном благодаря Фрэнку Розенблатту, разработавшему первое обучаемое нейросетевое устройство для распознавания образов, персептрон (от английского perception - восприятие).
Персептрон был впервые смоделирован в 1958 году, причем его обучение требовало около получаса машинного времени на одной из самых мощных в то время ЭВМ IBM-704. Аппаратный вариант - Mark I Perceptron - был построен в 1960 г. и предназначался для распознавания зрительных образов. Его рецепторное поле состояло из матрицы фотоприемников 20х20, и он успешно справлялся с решением ряда задач.
Тогда же возникли первые коммерческие нейрокомпьютинговые компании. В 1969 году Марвин Минский выпустил вместе с южноафриканским математиком Пейпертом книгу "Персептроны". В этой роковой для нейрокомпьютинга книге была строго доказана принципиальная ограниченность персептронов. Исследования в этом направлении были свернуты вплоть до 1983 года, когда они, наконец, получили финансирование от Агентства перспективных военных исследований США (DARPA). Этот факт стал сигналом к началу нового нейросетевого бума.
Интерес широкой научной общественности к нейросетям пробудился после теоретической работы физика Джона Хопфилда (1982 г), предложившего модель ассоциативной памяти в нейронных ансамблях. Холфилд и его многочисленные последователи обогатили теорию нейросетей многими идеями из арсенала физики, такими как коллективные взаимодействия нейронов, энергия сети, температура обучения и т.д. Однако настоящий бум практического применения нейросетей начался после публикации в 1986 году Давидом Румельхартом с соавторами метода обучения многослойного персептрона, названного ими методом обратного распространения ошибки (error back-propagation). Ограничения персептронов, о которых писали Минский и Пейперт, оказались преодолимыми, а возможности вычислительной техники-достаточными для решения широкого круга прикладных задач. В 90-х годах производительность последовательных компьютеров возросла настолько, что это позволило моделировать с их помощью работу параллельных нейронных сетей с числом нейронов от нескольких сотен до десятков тысяч. Такие эмуляторы нейросетей способны решать многие интересные с практической точки зрения задачи.
В основу искусственных нейронных сетей положены следующие черты живых нейронных сетей, позволяющие им хорошо справляться с нерегулярными задачами:
простой обрабатывающий элемент - нейрон (рис.1.1);
очень большое число нейронов участвует в обработке информации;
один нейрон связан с большим числом других нейронов (глобальные связи);
изменяющиеся по весу связи между нейронами;
массированная параллельность обработки информации.
Прототипом для создания нейрона послужил биологический нейрон головного мозга. ............