MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Інваріантні підпростори. Власні вектори і власні значення лінійного оператора

Название:Інваріантні підпростори. Власні вектори і власні значення лінійного оператора
Просмотров:503
Раздел:Математика
Ссылка:Скачать(139 KB)
Описание: Інваріантні підпростори. Власні вектори і власні значення лінійного оператора Як ми вже знаємо один і той же лінійний оператор в різних базисах задається різними матрицями. Виникає питання: чи не можна знайт

Часть полного текста документа:

Інваріантні підпростори. Власні вектори і власні значення лінійного оператора

Як ми вже знаємо один і той же лінійний оператор в різних базисах задається різними матрицями. Виникає питання: чи не можна знайти такий базис векторного простору, в якому матриця лінійного оператора має найпростіший вигляд. Таким виглядом буде діагональний вигляд. До вияснення цього питання ми і приступаємо.

1. Інваріантні підпростори.

Нехай U підпростір векторного простору Vn, а φ – лінійний оператор, заданий на просторі Vn.

Означення. Підпростір U векторного простору Vn називається інваріантним відносно лінійного оператора φ, якщо образ φ кожного вектора  із U належить цьому підпростору U, тобто

.

Приклади.

1. Розглянемо звичайний тривимірний простір V3 і нехай φ – поворот навколо осі OZ. Інваріантними підпросторами будуть, наприклад, площина XOY і сама вісь OZ.

2. Розглянемо знову векторний простір V3 і лінійний оператор φ, який полягає в ортогональному проектуванні векторного простору V3 на площину XOY. Інваріантними підпросторами будуть: площина XOY, сама вісь OZ, всі площини, які проходять через вісь OZ і всі прямі площини XOY, які проходять через початок координат.

3. В будь-якому векторному просторі кожен підпростір інваріантний відносно тотожного і нульового оператора.

4. В будь-якому векторному просторі сам простір і його підпростір, який складається тільки з нульового вектора, інваріантні відносно будь-якого лінійного оператора.

Доведемо, що перетин і сума підпросторів, інваріантних відносно лінійного оператора φ, інваріантні відносно цього оператора φ.

Нехай підпростори U1 і U2 – інваріантні відносно лінійного оператора , і нехай . Тоді  і , а значить  і , тобто . Отже, - інваріантний підпростір відносно оператора .

Нехай , де  і . Тоді  і , .Отже,  – інваріантний підпростір відносно оператора .

Особливу роль відіграють одновимірні інваріантні підпростори.

2. Власні вектори і власні значення.

Означення. Власним вектором лінійного оператора φ називається ненульовий вектор , для якого виконується рівність , де  – деяке число, яке називається власним значенням лінійного оператора, якому відповідає власний вектор .

Властивості власних векторів.

1.  Якщо  – власний вектор лінійного оператора  з власним значенням , то вектор  при будь-якому  також є власним вектором з тим самим власним значенням .

2.  Якщо , ,…, – власні вектори лінійного оператора , які належать до того самого власного значення , то будь-яка їхлінійна комбінація також буде власним вектором цього оператора з тим самим власним значенням .

3.  Теорема. Власні вектори, які відповідають різним власним значенням, лінійно незалежні.

Доведення. Нехай , ,…, – власні вектори лінійного оператора , які відповідають різним власним значенням , відповідно, тобто . Доводимо теорему методом математичної індукції за кількістю векторів.

Для  теорема справедлива, бо  за означенням, і  тоді і тільки тоді, коли .

Нехай теорема справедлива при , тобто - лінійно незалежні. Припустимо, що

 (1)

і доведемо, що рівність (1) виконується тоді і тільки тоді, коли всі .

Подіємо на рівність (1) лінійним оператором :

використавши лінійність оператора , одержимо

звідси

. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Інваріантні підпростори. Власні вектори і власні значення лінійного оператора
Просмотров:503
Описание: Інваріантні підпростори. Власні вектори і власні значення лінійного оператора Як ми вже знаємо один і той же лінійний оператор в різних базисах задається різними матрицями. Виникає питання: чи не можна знайт

Название:Офісна техніка в роботі оператора комп'ютерного набору
Просмотров:354
Описание: Курсова робота Офісна техніка в роботі оператора комп'ютерного набору План Вступ Розділ 1. Характеристика офісної техніки в роботі оператора комп'ютерного набору 1.1 Кому

Название:Багатокритеріальна задача лінійного програмування
Просмотров:365
Описание: 1. Завдання Розв’язати багатокритеріальну задачу лінійного програмування з отриманням компромісного розв’язку за допомогою теоретико-ігрового підходу. Задача (варіант 1): Z1= x1+2x2+x3 ® max Z2= – x1 –2x2+x3+x4 ® min

Название:Автоматизация транспортировки осей колесных пар автооператором портального типа
Просмотров:376
Описание: Введение Целью курсового проектирования является разработка системы автоматизации производственного процесса, имеющего место при изготовлении или ремонте вагонов, включая кинематические схемы заданной м

Название:Методи розв’язування одновимірних та багатовимірних нелінійних оптимізаційних задач та задач лінійного цілочислового програмування
Просмотров:293
Описание: Міністерство освіти і науки України Полтавський національний технічний університет імені Юрія Кондратюка Факультет інформаційно-телекомунікаційних технологій та систем Кафедра прикладної математики, інф

 
     

Вечно с вами © MaterStudiorum.ru