Вступ
Тема контрольної роботи "Інженерні розрахунки в MathCad" з дисципліни "Інформатика".
Мета роботи - придбання навичок роботи з системою MathCad.
Завданні 1 передбачає розв’язання системи лінійних рівнянь у програмі MathCAD.
Завданні 2 передбачає розв’язання нелінійного рівняння за допомогою програми MathCAD.
Завданні 3 потребує знайти дійсні розв’язки системи нелінійних рівнянь із заданим ступенем точності в середовищі MathCAD.
Завдання
Завдання 1.
Задана система трьох лінійних рівнянь.
Знайти розв’язок системи матричним методом в середовищі MathCAD.
Розв’язання:
Розв’язання системи рівнянь у матричному виді проводиться за формулою
X=A-1×B,
деA - матриця, що складається з коефіцієнтів при невідомих,
А-1 - обернена матриця до матриці А,
B - вектор вільних членів,
X - вектор розв'язків системи.
Для реалізації розрахунків в системі MathCAD необхідно скористатися панеллю інструментів Математика (Math):
яка визивається командою View®Toolbars®Math:
mathcad інженерний розрахунок рівняння
Кнопками панелі Математика необхідно визвати панелі:
Калькулятор (кнопкою ):
Матриця (кнопкою ):
А потім виконати наступні дії:
1. Створимо матрицю А:
Пояснення до виконуваних дій:
Використавши кнопку панелі Matrix:
Задаємо 4 рядки і 4 стовпці. А потім заповнюємо шаблон матриці коефіцієнтами системи:
2. Створюємо вектор В:
Задаємо 4 рядки 1 стовпець:
Після чого заповнюємо маркери шаблону значеннями вільних членів системи:
3. Обраховуємо вектор Х:
Знак присвоєння: = вибираємо на панелі Calculator, обернену матрицю до матриці А створюємо за допомогою кнопки на панелі Matrix.
4. Виводимо результат розрахунків:
Результати рішення системи:
x = 0.091
y = - 0.243
z = - 0,601
t = 0.210
5. Робимо перевірку:
Розв’язок вірний, оскільки результат перемноження матриці А на вектор Х дорівнює вектору В.
Завдання 2
Знайти корінь нелінійного рівняння x3 + sin (x - 3) +1 = 0 з точністю e =0.0001
Розв’язання:
Всяке рівняння з одним невідомим може бути записане у вигляді f (x) = 0.
Знаходження наближеного значення дійсних коренів рівняння складається з двох етапів:
1 етап - відділення коренів - виділення відрізка, що належить області існування функції f (x), на якому розташований один і тільки один корінь. Для відділення коріння будують графік функції f (x). Абсциси точок перетину графіка функції y = f (x) з віссю ОХ і будуть наближеними значеннями коренів. По графіку легко вказати відрізки, на яких знаходиться один і тільки один корінь.
2 етап - уточнення наближених корінь, тобто обчислення їх із заданою точністю e.
1 етап. Графічне відділення коренів рівняння.
Побудуємо графік функції f (x) = x3 + sin (x - 3) +1.
Опишемо функцію в виді функції користувача:
Вставимо в документ графічну область командою Insert®Graph®XY-Plot:
Маркери (n) отриманого шаблону заповнимо відповідно іменем аргументу х і іменем функції f (x):
Відформатуємо графік командою Format®Graph®XY-Plot:
Виберемо опцію Grossed (показувати осі координат):
Як видно із графіка функція f (x) перетинає вісь абсцис на інтервалі [-2; - 1]. ............