MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Наука и техника -> Определение размерности Хаусдорфа фракталов с циклически повторяющимися структурами

Название:Определение размерности Хаусдорфа фракталов с циклически повторяющимися структурами
Просмотров:106
Раздел:Наука и техника
Ссылка:Скачать(38 KB)
Описание:Классически, в литературе описание фракталов начинается с примера триадной кривой Гельгона фон Коха. Эта кривая строится итеративно. Построение начинается с прямолинейного отрезка единичной длины.

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Определение размерности Хаусдорфа фракталов с циклически повторяющимися структурами
    С.С. Кубрин
    Институт "Гипроуглеавтоматизация", Кемерово
    Классически, в литературе описание фракталов начинается с примера триадной кривой Гельгона фон Коха. Эта кривая строится итеративно. Построение начинается с прямолинейного отрезка единичной длины. На первом шаге исходный отрезок заменяется четырьмя длиной каждый в 1/3 от длины исходного. Далее, операция повторяется с каждым вновь полученным отрезком. Таким образом, получают кривую Коха разной детальности в зависимости от числа итераций. Когда число итераций устремляется к бесконечности () получаем предельную кривую (рис. 1).
    Легко видеть, что длина триадной кривой Коха определяется формулой и стремится к бесконечности. Соответственно, размерность Хаусдорфа данного фрактального образования определяется соотношением: ( - число элементов, - относительный размер элементов).
    
    Для построения кривой Коха, используется только одна структура. К сожалению, такие фракталы в природе редко встречаются. Чаще всего, в построении фракталов участвуют несколько структур, состоящих из различного числа элементов. Причем, размеры элементов структур также различны.
    Рассмотрим небольшой пример. Пусть элементы кривой (это, конечно, будет уже не кривая Коха) на первой итерации делятся на три элемента, на второй на четыре, в третьем на пять, в четвертом снова на три и так далее изменясь циклически. А правило определяющее размер элементов остается тем же, что и для кривой Коха.
    Тогда, в самом начале процесса длина кривой определяется как; где: - число элементов, - длина элемента. На первом шаге (n=1) длина кривой и её форма не меняются, (,).
    Запишем число элементов кривой и длины элементов для следующих нескольких итераций. Так при:
    n=2, , n=3, ,
    n=4, , n=5, ,
    n=6, ,
    и соответственно для:n, ,.
    Итак, длина кривой будет равна. Выражая n через длину элемента () и применяя прямую и обратную операции логарифмирования имеем:
    .
    
    Рис.2. Влияние на размерность Хаусдорфа числа структур с различным
    количеством элементов (l = 1/10). В точке n = 1 k = 11.
    Откуда фрактальная размерность. По сравнению с кривой Коха у вновь полученной кривой размерность Хаусдорфа меньше, но длина ее все еще не конечна. Обобщая полученный результат, на произвольное число структур, формула для определения размерность Хаусдорфа при циклическом структуроформирующем правиле примет вид:
    ,
    здесь: a - число различных структур; - число элементов в структуре; - число повторений структуры.
    Произведя аналогичные рассуждения относительно правила, определяющего размер элементов структур, получим зависимость от числа структур и вариации размеров элементов структур:
    .
    Проанализируем влияние численности структур, участвующих в формировании фрактального образования, на размерность Хаусдорфа этого образования. Пусть имеются несколько фрактальных образований. Первое строилось с помощью одной структуры, состоящей из j элементов. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Методика и структура занятия танцевального направления аэробики «Belly-dance»
Просмотров:748
Описание: Введение Основной целью фитнес-занятий bellydance является оздоровление организма - поддержание достаточного уровня развития двигательных способностей при строжайшем соблюдении требований травмобезопасности и ми

Название:Особенности и характеристика двух основных элементов таможенного оформления
Просмотров:772
Описание: Таможенное оформление - это процедура помещения товаров и транспортных средств под определенный таможенный режим и выпуск товаров в соответствии с заявленным режимом. Таможенное оформление начинается не поздн

Название:Коммуникационная структура и классификация субъектов внешней и внутренней среды
Просмотров:725
Описание: Под внешней средой организации понимаются все условия и факторы, возникающие в окружающей среде, независимо от деятельности конкретной фирмы, но оказывающие или могущие оказать воздействие на её функционирование

Название:Роль микроэлементов в составе удобрений
Просмотров:559
Описание: Черноногов В.Г., агроном ОАО «Буйский химический завод» Элементы питания с приставкой «микро» оказывают макроэффект, если они обеспечивают необходимый баланс питания. Данное обстоятельство является ключевым

Название:Структурная анизотропия нефтегазовых месторождений и утилизация бурового шлама
Просмотров:529
Описание: А. В. Чепрасов, А. И. Трегуб, Воронежский государственный университет В настоящее время при эксплуатации нефтяных и газовых месторождений сталкиваются с проблемой переработки и утилизации отходов бурения. В Росс

 
     

Вечно с вами © MaterStudiorum.ru