Задача 1
Испытываемая жидкость заливается в кольцевую щель на высоту h между цилиндрами А и В (см. рис. 1). Для вращения цилиндра В относительно цилиндра А с частотой n нему должен быть приложен момент М. пренебрегая моментом трения в опорах, определить динамический и кинематический коэффициенты вязкости жидкости с плотностью с. При расчете принять d >> D-d, где D и d – диаметры цилиндров.
Номер варианта
M,
H·см
n,
об/мин
D,
Мм
d,
мм
h,
мм
с,
г/см3
9 1500 80 208 200 120 0,72
Рис. 1
Решение
Возникает момент сопротивления:
dMтр = ,
где =; S – площадь цилиндра. S= р·d·h.
По закону Ньютона (для внутреннего трения):
dFтр = .
Приближенно находим
=.
где Vнар. – скорость наружного цилиндра диаметра d; Vвнутр.= 0 – скорость внутреннего цилиндра диаметра D.
Vнар. = 2 р·n·.
Получаем численно:
= = .
Получаем для нашего случая, сила трения действующая на внутренний цилиндр:
Fтр = з··S.
Вращающий момент силы трения:
Mтр = Fтр·.
Получаем,
Mтр = з·· р·d·h·.
При установившимся движении М = Mтр:
М = з·· р·d·h·.
Находим динамический коэффициент вязкости:
з = ,
з == = 4,610 Па·с.
Находим кинематическую вязкость жидкости (кинематический коэффициент вязкости жидкости):
д = = = 6,40·10-3 .
Ответ: динамический коэффициент вязкости – з = 4,978 Па·с; кинематический коэффициент вязкости д = 6,40·10-3 .
Задача 2
Определить разность давлений в точках А и В, заполненных водой резервуаров (см. рис. 2), если известны показания ртутного дифманометра Д h= 20 см и расстояние между точками Н =0,7 м. Плотность воды св = 1000 кг/м3; ртути срт = 13,544·103 кг/м3.
вращение цилиндр вязкость давление
Рис. 2
Решение
Давление на уровне О- О можем определить так:
Ро = РА + сВg (Н + Дх + Дh),
Ро = РА + сВ·g·Дх +срт·g·Дh).
Получаем из полученных выражений:
РА + сВg (Н + Дh)+ сВ·g·Дх = сВ·g·Дх+ срт·g·Дh+РА – РВ = срт·g·Дh – сВg (Н + Дh) = 13,544·103 кг/м3 ·9,8 м/с2 · 0,2 м – 1000 кг/м3· 9,8 м/с2 · 0,9 м = 17726,24 Па.
Ответ: разность давлений между точками А и В составляет 17726,24 Па.
Задача 3
Прямоугольное отверстие высотой h = 300 мм и шириной b = 800 мм в вертикальной стенке заполненного водой закрытого резервуара закрыто щитком, вращающимся вокруг горизонтальной оси О (см. рис. 3). Щит прижимается грузом, подвешенным на рычаге длиной r = 1000 мм. Определить минимальный вес груза и построить эпюру давлений на щит, если известны глубина погружения нижней кромки отверстия под водой Н = 1000 мм, расстояние от верхней кромки отверстия до оси вращающегося щита а= 90 мм и показание пружинного манометра со = 1,1·104 Па. Весом рычага и трением в опоре пренебречь. Плотность воды св = 1000 кг/м3. момент инерции прямоугольника относительно центральной оси определяется по формуле J = b·h3/12.
Рис. 3
Решение
Манометр показывает избыточное давление по отношению к атмосферному.
Сила давления суммарная, действующая на щит с внутренней стороны щита равна:
F = [Po + с·g (H-)]·b·h.
Находим ее приложение (давление рассчитываем для центра тяжести т. площадки). Сила давления не приложена в центре тяжести площадки, т.е. ............