MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Поле комплексных чисел

Название:Поле комплексных чисел
Просмотров:932
Раздел:Математика
Ссылка:Скачать(220 KB)
Описание: Вопросы поля комплексных чисел, описывается построение поля комплексных чисел, приводятся алгебраическая форма записи комплексных чисел, определение комплексного числа, действия над комплексными числами. п.1. По

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Вопросы поля комплексных чисел, описывается построение поля комплексных чисел, приводятся алгебраическая форма записи комплексных чисел, определение комплексного числа, действия над комплексными числами.

п.1. Построение поля комплексных чисел.

Рассмотрим множество . Определим на  бинарные операции сложения , умножения , унарную операцию  и определим элементы .

Для :

;

;

.

Обозначим: .

Теорема 1. Алгебра  является полем.

Доказательство. Проверим, что алгебра  есть абелева группа.

Для

.

Для

.

Для

.

Для

(.

Проверим, что операция - ассоциативна, то есть  

.

Действительно,

.

Проверим левый закон дистрибутивности, то есть для  

.

Действительно,

,

.

Аналогично проверяется справедливость правого закона дистрибутивности.

Из выше доказанного следует, что алгебра  есть кольцо.

Проверим, что кольцо  коммутативно, то есть для  .

Действительно,

.

Проверим, что  - кольцо с единицей 1, то есть

.

Действительно,

.

Так как , то .

Докажем, что каждый ненулевой элемент кольца  обратим. Пусть , что равносильно . Рассмотрим пару  и проверим, что эта пара является обратной к паре . Действительно,

.

Из выше доказанного следует, что алгебра  - поле.

Определение. Поле  называется полем комплексных чисел, а его элементы - комплексными числами.

п.2. Алгебраическая форма записи комплексных чисел.

Обозначение. Множество комплексных чисел принято обозначать , то есть . Приняты также следующие обозначения:

 для .

Теорема 2. Каждое комплексное число  может быть, и притом единственным образом, записано в виде:

, где . (Такая запись называется алгебраической формой записи комплексного числа ).

Доказательство. Существуют  такие, что . Имеем

.

Теорема 3. Число  обладает свойством: .

Доказательство. .

Из равенства  следует, что .

Определение. Пусть , где . Число  называется действительной частью,  - мнимой частью комплексного числа . Пишем .

Пусть  - алгебраическая форма записи комплексного числа . Тогда:

если , то ;

если , то .

Определение. Если , то комплексное число  называют чисто мнимым числом.

Действия над комплексными числами в алгебраической форме

1) Для

.

Другими словами: комплексное число равно нулю тогда и только тогда, когда у него действительная и мнимая части равны нулю.

Доказательство. .

2) Для

.

Другими словами: два комплексных числа равны тогда и только тогда, когда у них, соответственно, равны действительная и мнимая части.

Доказательство. .

3) Для

.

Другими словами: чтобы сложить два комплексных числа, нужно, соответственно, сложить их действительные и мнимые части.

Доказательство. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Поле комплексных чисел
Просмотров:932
Описание: Вопросы поля комплексных чисел, описывается построение поля комплексных чисел, приводятся алгебраическая форма записи комплексных чисел, определение комплексного числа, действия над комплексными числами. п.1. По

Название:Алгебра и алгебраические системы
Просмотров:498
Описание: Рассматриваются бинарные и n-местные операции, виды бинарных операций, вводятся понятия алгебры, подалгебры, алгебраической системы, приводятся примеры. п.1. Бинарные и n-местные операции. Пусть - непустое множест

Название:Доказательство теоремы о представлении дзета-функции Дедекинда
Просмотров:490
Описание: Содержание Введение Глава 1. Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле Глава 2. Вывод функционального уравнения дзета-функции Дедекинда Заключение Список используем

Название:Определители матрицы и системы линейных алгебраических уравнений
Просмотров:364
Описание: Реферат по дисциплине: "Математика" на тему: «Определители матрицы и системы линейных алгебраических уравнений» Основные определения Определение. Матрицей размера m´n,

Название:Методика обучения решению текстовых задач алгебраическим способом
Просмотров:203
Описание: Дипломная работа По теме: «Методика обучения решению текстовых задач алгебраическим способом» Содержание Введение Глава 1. Научно-методические основы обучения решению текст

 
     

Вечно с вами © MaterStudiorum.ru