MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Последовательность решения задач линейного программирования симплекс-методом

Название:Последовательность решения задач линейного программирования симплекс-методом
Просмотров:322
Раздел:Математика
Ссылка:Скачать(32 KB)
Описание: Введение Линейное программирование наука о методах исследования и отыскания экстремальных значений линейной функции, на параметры которой наложены линейные ограничения. Методы решения задач линейного пр

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Введение

Линейное программирование наука о методах исследования и отыскания экстремальных значений линейной функции, на параметры которой наложены линейные ограничения.

Методы решения задач линейного программирования относятся к вычислительной математике. С ростом мощности компьютеров необходимость применения изощренных методов вычисления снижается, поскольку во многих случаях время счета перестает быть лимитирующим фактором, поскольку весьма мало (доли секунд). Можно выделить лишь три таких метода.

1. Простой перебор. Возьмем некоторый многомерный параллелепипед, в котором лежит многогранник, задаваемый ограничениями. Как его построить? Например, если имеется ограничение типа 2Х1 + 5Х2 ≤ 10, то, очевидно, 0 ≤ Х1 ≤ 10/2 = 5 и 0 ≤ Х2 ≤ 10/2 = 5. Аналогичным образом от линейных ограничений общего вида можно перейти к ограничениям на отдельные переменные. Остается взять максимальные границы по каждой переменной. Если многогранник, задаваемый ограничениями, неограничен, как было в задаче о диете, можно похожим, но несколько более сложным образом выделить его "обращенную" к началу координат часть, содержащую решение, и заключить ее в многомерный параллелепипед.

Проведем перебор точек параллелепипеда с шагом 1/10n последовательно при n=2,3,…, вычисляя значения целевой функции и проверяя наличие ограничений. Из всех точек, удовлетворяющих ограничениям, возьмем ту, в которой целевая функция максимальна. Решение найдено!

2. Направленный перебор. Начнем с точки, удовлетворяющей ограничениям (ее можно найти простым перебором). Будем последовательно (или случайно - т.н. метод случайного поиска) менять ее координаты на определенную величину ∆, каждый раз в точку с более высоким значением целевой функции. Если выйдем на плоскость ограничения, будем двигаться по ней (находя одну из координат по уравнению ограничения). Затем движение по ребру (когда два ограничения-неравенства переходят в равенства)… Остановка - в вершине линейного многогранника. Решение найдено! (Более строго выражаясь, найдено с точностью до ∆; если необходимо, в окрестности найденного решения проводим направленный перебор с шагом ∆/2 , ∆/4 и т.д.)

3. Симплекс-метод. Этот один из первых специализированных методов оптимизации, нацеленный на решение задач линейного программирования, в то время как методы простого и направленного перебора могут быть применены для решения практически любой задачи оптимизации. Он был предложен американцем Г. Данцигом в 1951 г. Симплекс-метод состоит в продвижении по выпуклому многограннику ограничений от вершины к вершине, при котором на каждом шаге значение целевой функции улучшается до тех пор, пока не будет достигнут оптимум.

Такой многогранник ограничений можно назвать функцией, которая для задачи линейного программирования является целевой, а ограничения, записываемые в виде линейных уравнений или неравенств, называются системой ограничений.

Общей задачей для линейного программирования является нахождение неотрицательного решения системы линейных ограничений, которое оптимизирует линейную целевую функцию:

f(x1,x2,…,xn)=c1x1+c2x2+…+cnxn→ max (min)

Выделяют две формы задач линейного программирования:

1. стандартная форма

2. каноническая форма

Планом называется вектор x=(x1,x2,…,xn) Rn , удовлетворяющий условиям (1)-(3). Множество всех допустимых решений задачи будем обозначать через X .допустимое решение x X, при котором целевая функция достигает наибольшего (max) или наименьшего значения (min), называется оптимальным решением задачи линейного программирования. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Особенности и характеристика двух основных элементов таможенного оформления
Просмотров:765
Описание: Таможенное оформление - это процедура помещения товаров и транспортных средств под определенный таможенный режим и выпуск товаров в соответствии с заявленным режимом. Таможенное оформление начинается не поздн

Название:Элементы сферической геометрии
Просмотров:1033
Описание: Экзаменационный реферат по геометрии Выполнил ученик 11 «б» класса Шкерин Андрей Владимирович МОУ «Гагинская средняя общеобразовательная школа» Гагино 2008 Введение На протяжении многих веков человечеств

Название:Морковь столовая. Элементы агротехники
Просмотров:546
Описание: Отношение к факторам внешней среды. Семена моркови очень медленно прорастают. При благоприятных температурах всходы появляются на 10—15-й день после посева, а в холодную и засушливую погоду — на 25—30-й. Они начинают

Название:Роль микроэлементов в составе удобрений
Просмотров:549
Описание: Черноногов В.Г., агроном ОАО «Буйский химический завод» Элементы питания с приставкой «микро» оказывают макроэффект, если они обеспечивают необходимый баланс питания. Данное обстоятельство является ключевым

Название:Томат. Элементы агротехники
Просмотров:542
Описание: Требования к условиям окружающей среды. Томат - однолетняя культура. Стебель томатов травянистый, сочный, во влажной среде дает дополнительные корни, с возрастом становится грубым. В пазухах листьев стебель образу

 
     

Вечно с вами © MaterStudiorum.ru