Часть полного текста документа:Преобразования Лоренца, постоянство скорости света и требование однородности времени. С. В. Мельничук В работе обсуждается довольно устоявшегося раздела физики, а именно приложений преобразований Лоренца в кинематике весомой материи. Рассматривается проблема совместимости требований постоянства скорости света и однородности времени в преобразованиях Лоренца. Делается акцент на том, что первоосновы таких понятий как пространство и время будут отождествляться с состоянием системы отсчета (мерой пространственно-временных характеристик), а не результатами ее использования (координатами). Связывая понятие пространства с его мерой (стержни с метрической меткой), показано, что действие преобразований Лоренца приводит к анизотропии, как пространства, так и времени. Предлагается способ решения проблемы анизотропии времени, при переходе к описанию явлений макромира. Инвариантность уравнений Максвелла при переходах между инерциальными системами отсчета Введение Выражения: (1) были получены Лоренцем, как преобразования координат и времени, оставляющие инвариантными вид уравнений Максвелла во всех инерциальных системах отсчета, при условии постоянства скорости распространения электромагнитного поля. Решаемая им задача может быть сформулирована следующим образом. Рассматриваются две системы отсчета. Первая считается покоящейся, вторая движущейся относительно первой с постоянной скоростью . Координаты событий и компоненты поля в покоящейся системе отсчета обозначают и . Они считаются заданными или исходными. Координаты событий и компоненты поля в движущейся системе отсчета обозначают: и . Они считаются искомыми. Согласно Максвеллу, записываются шесть уравнений для компонент свободного электромагнитного поля в покоящейся и движущейся системах отсчета: (2) Где (3) Требуется найти такую взаимосвязь всех штрихованных переменных с не штрихованными переменными, чтобы после их соответствующей подстановки, штрихованные уравнения перешли в не штрихованные, без изменяя своего вида. Рассмотрим простой случай свободного электромагнитного поля в вакууме с плоским фронтом волны. Это поперечный волновой процесс, в котором вектора электрического и магнитного поля ортогональны друг другу, а так же направлению своего распространения. Следовательно, можно выбрать направление осей покоящейся системы координат таким образом, что компоненты электрического и магнитного поля будут иметь только по одной составляющей. Для определенности положим: (4) т.е. электрическое поле направленно вдоль оси , магнитное поле вдоль оси . Ось совпадает с направлением распространения электромагнитного поля. С учетом этого система (2) принимает вид: (5) Является очевидным, что с математической точки зрения, данная система уравнений неразрешима однозначно. Для ее решения Лоренцу пришлось обратиться к ряду физических требований (автор не оспаривает их разумности), а именно: искомые преобразования для пространственно-временных переменных должны быть линейными, координаты событий вдоль направлений ортогональных направлению перемещения движущейся системы отсчета преобразуются тождественно. ............ |