Содержание
Введение
1. Простейшие преобразователи напряжения в ток
2. ПНТ на основе дифференциальных каскадов
3. Повышение линейности ПНТ
4. Исследование ПНТ
Библиографический список
Введение
Преобразователи напряжение-ток (ПНТ) также являются важным элементом в схемотехнике аналоговых электронных устройств. На их основе могут быть выполнены различные прецизионные операционные усилители, в которых ПНТ используется как входной дифференциальный каскад; ПНТ органично входят в структуры АПН и могут использоваться в различных измерительных схемах.
1. Простейшие преобразователи напряжения в ток
Принцип преобразования напряжения в ток может быть проиллюстрирован с помощью простейшего усилительного каскада на одиночном транзисторе (рис. 1). (Отметим, что резистор R1 выполняет функцию подключения коллектора к шине питания; он достаточно низкоомный и служит как датчик тока при измерении тока коллектора.)
Рис. 1. Простейший преобразователь напряжение-ток на одиночном транзисторе
Предположим, что напряжение смещения UC транзистору обеспечивает источник сигнала UС. Тогда для тока эмиттера IЭ транзистора может быть записано следующее уравнение:
. (1)
Оценивать качество преобразования входного напряжения в выходной ток (ток коллектора IK транзистора) наиболее просто, находя крутизну прямого преобразования S:
при условии, что a » 1.
Находить производную от выражения (1) в явном виде – достаточно громоздкая процедура, поэтому можно найти производную dUC/dIk, а затем взять обратную величину:
,
то есть
. (2)
Выражение (2) показывает, что качество преобразования входного напряжения в выходной ток существенным образом зависит от дифференциального сопротивления эмиттера транзистора, которое, в свою очередь, зависит от тока эмиттера, а следовательно, от входного напряжения. Таким образом, простейший ПНТ обладает двумя существенными недостатками:
- нелинейностью крутизны преобразования;
- отсутствие возможности осуществлять преобразование двухполярных сигналов.
2. ПНТ на основе дифференциальных каскадов
Обеспечить преобразование двухполярных сигналов можно с помощью ПНТ на основе дифференциального каскада с последовательной отрицательной обратной связью по току в эмиттерной цепи (рис. 2а).
а) б)
Рис. 2. Преобразователь напряжение-ток а) и его проходная характеристика б)
Для схемы ПНТ (рис. 2а), воспользовавшись вторым правилом Кирхгофа, можно записать следующее уравнение для узловых потенциалов:
, (3)
где jT – температурный потенциал;
IХ – приращение тока через резистор R1 при воздействии входного напряжения UX.
С учётом того, что разность напряжений база-эмиттер можно представить как:
,
проходная характеристика такого звена (рис. 2б) может быть представлена следующим образом:
. (4)
Очевидно, что нелинейная составляющая в проходной характеристике определяется первым слагаемым в выражении (4).
Достаточно удобным способом оценки погрешности такого преобразователя, обусловленной нелинейностью, может служить нахождение отклонения реальной функции IХ /I0 (кривая 2 на рис. 2б) от её линейного приближения (кривая 1 на рис. ............