MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Промышленность, производство -> Привод цепного транспортера

Название:Привод цепного транспортера
Просмотров:153
Раздел:Промышленность, производство
Ссылка:Скачать(475 KB)
Описание: Введение Технический уровень всех отраслей народного хозяйства в значительной мере определяется уровнем развития машиностроения. На основе развития машиностроения осуществляется комплексная механизация

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Введение

Технический уровень всех отраслей народного хозяйства в значительной мере определяется уровнем развития машиностроения. На основе развития машиностроения осуществляется комплексная механизация и автоматизация производственных процессов в промышленности, строительстве, сельском хозяйстве и на транспорте.

Перед машиностроением поставлена задача значительного повышения эксплуатационных и качественных показателей при непрерывном росте объёма её выпуска.

Одним из направлений решения этой задачи является совершенствование конструкторской подготовки студентов высших учебных заведений.

Выполнение курсового проекта по «деталям машин» завершается общеобразовательный цикл подготовки студентов. При выполнении работы используются знания из ряда пройденных предметов: теория машин и механизмов, механика материалов и конструкций, материаловедение и другие.

Объектом курсового проекта является привод цепного транспортера.


1. Выбор двигателя, кинематический и силовой расчет привода

1.1 Анализ кинематической схемы привода и его передаточного механизма

Привод состоит из электродвигателя, клиноременной передачи, цилиндрического горизонтального редуктора, муфты комбинированной компенсирующей с предохранительной по моменту.

Силовой поток от электродвигателя 1 идет через упругую муфту 2 к редуктору 3, далее последовательно через вертикальные цилиндрические передачи редуктора и через комбинированную управляемую муфту 4 на приводной вал с тяговой звездочкой 5.

Для упорядочения последующих расчётов на заданной кинематической схеме привода выполним дополнительные обозначения: по ходу силового потока нумеруем валы и элементы механических передач – шкивы (D1, D2).

1.2 Выбор стандартного асинхронного электродвигателя

Поскольку в рассматриваемой кинематической схеме привода передаточный механизм состоит из последовательно соединённых цилиндрических передач с учетом потерь в компенсирующей муфте общий коэффициент полезного действия передаточного механизма равен:

                                                                  (1.1)

где  – коэффициент полезного действия закрытой зубчатой цилиндрической передачи, в расчётах принимаем ;

 – коэффициент полезного действия муфты, в расчётах принимаем .

 – коэффициент полезного действия пары подшипников, в расчётах принимаем = 0,99

.

В соответствии с заданной мощностью (Рв = 2,5025 кВт (Рв = Ft∙V=4,5∙0,55)) на выходном валу привода и расчётным значением общего КПД передаточного механизма () вычисляем требуемую мощность электродвигателя

                                                                                     (1.2)

Располагая численным значением мощности электродвигателя (Рдв = 2,77 кВт.) рассчитываем среднеквадратичную мощность двигателя РКВ= КЭК ∙ РДВ = 0,58 ∙ 2,77 = 1,6066 кВт, где КЭК = 0,58 при заданном режиме нагрузки.

Затем выбираем по каталогу, ориентируясь на номинальную мощность РД, четыре возможных стандартных асинхронных двигателя, которые при одном и том же значении РД отличаются номинальными частотами вращение валов nД.

При выборе двигателя будем следовать условию:

РД ³ РКВ                                                                                         (1.3)


Возможные варианты типоразмеров асинхронных электродвигателей и их основные параметры представляем в таблице №1.

Таблица 1.1

п/п

Тип электродвигателя Номинальная мощность двигателя РД, кВт Номинальная частота вращения вала двигателя nД, мин-1 Передаточное число 1 4А80B2У3 2,2 2850 77,87 2 4А90L4У3 2,2 1425 38,93 3 4А100L6У3 2,2 950 25,9 4 4А112MA8У3 2,2 700 19,12

Вычислим номинальную частоту вращения вала двигателя nв, мин-1

                                                                                      (1.4)

Определяем возможное ориентировочное значение общего передаточного отношения Uов, которое может быть реализовано в заданной схеме передаточного механизма привода.

Так как в заданной кинематической схеме присутствует редуктор и клиноременная передача, то ориентировочное значение общего передаточного отношения будет равно

где  − рекомендуемое значение передаточного числа цилиндрической зубчатой передачи.

При выборе электродвигателя будем ориентироваться на условие

                                                                                    (1.5)

Исходя из конструктивных соображений выбираем электродвигатель №4 марки 4А112MA8У3.

1.3 Разбивка общего передаточного отношения передаточного механизма привода по его ступеням

Сопоставляем возможное ориентировочное значение общего передаточного отношения с расчетной величиной, выбираем конкретный типоразмер электродвигателя.

                                                                                  (1.6)

где - передаточное число быстроходной зубчатой цилиндрической передачи;

- передаточное число тихоходной зубчатой цилиндрической передачи;

Выполняем разбивку передаточного числа редуктора по его ступеням.

Назначаем передаточные числа для первой и второй ступеней редуктора (,).

,

                                                                                   (1.7)


Разбивка общего передаточного числа передаточного механизма привода завершена.

1.4 Определение номинальных частот вращения валов привода

Номинальные частоты вращения валов в заданном приводе определяют с учётом выполненной разбивки общего передаточного отношения  по ступеням передаточного механизма привода.

Частота вращения вала 1 (входного вала редуктора):

n1 = nД,                                                                                  (1.8)

n1 = 700 мин-1.

Частота вращения вала 2 (промежуточного вала привода):

,                                                                               (1.9)

.

Частота вращения вала 3 (выходного вала привода):

                                                                               (1.10)


1.5 Определение номинальных вращающих моментов на валах привода

Номинальные вращающие моменты, действующие на валах привода, определим с учётом передаточных отношений механических передач и их коэффициентов полезного действия.

Определим номинальный вращающий момент на первом валу привода с помощью формулы:

,                                                  (1.12)

где Рдс – номинальная мощность на валу двигателя в кВт,

nд – номинальная частота вращения вала электродвигателя, мин-1.

Номинальный вращающий момент на первом валу:

,                                                                        (1.13)

.

Номинальный вращающий момент на втором валу:

,                                                                    (1.13)

.

Номинальный вращающий момент на третьем выходном валу:


,                                                                                 (1.14)

.

1.6 Техническая характеристика привода

В технической характеристике приведены численные значения основных кинематических и энергетических параметров привода.

Номинальный вращающий момент на выходном валу, Н·мм 69,68·104.

Номинальная частота вращения выходного вала, мин-1     36,6.

Общее передаточное отношение редуктора                         20.

Общий коэффициент полезного действия                                       0,903.


2. Выбор материалов и определение допускаемых напряжений для зубчатых передач

 

2.1 Выбор материалов и определение допускаемых напряжений для зубчатых колес тихоходной передачи

Номинальная частота вращения ведущей шестерни n2 = 140 мин-1.

Номинальная частота вращения ведомого колеса n3 = 36,6 мин-1.

Срок службы передачи, часов (лет): 5 лет.

Расчёт допускаемых напряжений для зубчатой пары при термической обработке представлен в таблице №2.1.

Таблица 2.1

Наименование,

указание

Обозначение, расчётная формула, вычисление, принимаемое значение шестерня колесо 1 Вариант материалов и термической обработки зубьев 1 1 2 Марка стали 40ХН ГОСТ 4543–71 45 ГОСТ 1050–88 3 Термическая или химико-термическая обработка зубьев Улучшение улучшение 4 Предполагаемый размер S заготовки не более, мм 100 100 5 Способ получения заготовки Прокат круглый Поковка

6 Механические характеристики материалов (по данным таблицы 2):

твёрдость сердцевины,

твёрдость поверхности зуба,

предел текучести

230…300 НВ

230…300 НВ

600

192…240 НВ

192…240 НВ

450

7 Наиболее вероятная (средняя) твёрдость сердцевины

8 Наиболее вероятная (средняя) твёрдость поверхности


 9 Предел контактной выносливости материала, МПа

10 Базовое число циклов нагружения при расчёте по контактным напряжениям

11 Суммарное машинное время работы (ресурс) передачи, часов

12 Фактическое число циклов перемены напряжений зубьев шестерни и колеса за заданный ресурс передачи

13 Коэффициент эквивалентности при расчёте по контактным напряжениям

14 Эквивалентные числа циклов перемены напряжений зубьев шестерни и колеса при расчёте по контактным напряжениям

15 Коэффициент долговечности материалов шестерни и колеса при расчёте по контактным напряжениям

Поскольку эквивалентные числа циклов перемены напряжений NHE1 и NHE2 больше соответствующих базовых значений NHG1 и NHG2, что указывает на работу материалов в зоне длительного предела выносливости, поэтому

16 Коэффициенты запаса прочности при расчёте по контактным напряжениям

При вероятности разрушения Р(t) = 0,98 имеем:

SH3=1,1             SH4=1,1

17 Допускаемые контактные напряжения для шестерни и колеса при расчете на выносливость активных поверхностей зубьев, МПа

18 Расчетное допускаемое контактное напряжение для проектного расчета передачи, МПа

С учётом указаний к формулам (16)… (18) для 1-го варианта термической обработки шестерни и колеса принимаем =458,0

19 Максимальное допускаемое контактное напряжение для проверки прочности зубьев при кратковременных перегрузках, МПа

20 Предел изгибной выносливости материалов, МПа

21 Коэффициент, учитывающий влияние способа получения заготовки

22 Коэффициент, учитывающий влияние шероховатости переходной поверхности между смежными зубьями на их изгибную выносливость

При окончательной механической обработке зубьев – шлифование рабочей и переходной поверхностей зубьев имеем:

23 Коэффициент, учитывающий влияние двухстороннего приложения

Поскольку передача непрерывная, принимаем

24 Коэффициент эквивалентности при расчете по напряжениям изгиба

25 Эквивалентные числа циклов перемены напряжений зубьев шестерни и колеса при расчете по напряжениям изгиба

26 Коэффициенты долговечности материалов шестерни и колеса при расчете по напряжениям изгиба

Поскольку в рассматриваемом материале

то в последующих расчётах с учётом ограничений (26) принимаем минимальное значение коэффициента долговечности, т.е.

27 Коэффициент запаса прочности при расчете по напряжениям изгиба

При вероятности разрушения

Р(t) = 0,98

SF1 = 1,75                    SF2 = 1,75

28 Допускаемые напряжения изгиба зубьев шестерни и колеса при расчете на выносливость, Мпа

29 Максимальные допускаемые напряжения изгиба для проверки прочности зубьев шестерни и колеса при кратковременных перегрузках, МПа

Итоговые результаты определения допускаемых напряжений

для зубчатой передачи

Расчетное допускаемое контактное напряжение для проектного расчета передачи, Мпа

Допускаемые напряжения изгиба при расчете на выносливость, МПа

Максимальные контактные напряжения для проверки прочности зубьев при кратковременных перегрузках, МПа

Максимальные допускаемые напряжения изгиба при проверки прочности зубьев при кратковременных перегрузках, МПа

2.2 Выбор материалов и определение допускаемых напряжений для зубчатых колес быстроходной передачи

Номинальная частота вращения ведущей шестерни n1 = 700 мин-1.

Номинальная частота вращения ведомого колеса n2 = 140 мин-1.

Срок службы передачи (лет): 5 лет.

Расчёт допускаемых напряжений для зубчатой пары при термической обработке представлен в таблице №2.2.

Таблица 2.2

Наименование,

указание

Обозначение, расчётная формула, вычисление, принимаемое значение шестерня колесо 1 Вариант материалов и термической обработки зубьев 1 1 2 Марка стали 40ХН ГОСТ 4543–71 45 ГОСТ 1050–88 3 Термическая или химико-термическая обработка зубьев Улучшение улучшение 4 Предполагаемый размер S заготовки не более, мм 100 100 5 Способ получения заготовки Прокат круглый Поковка

6 Механические характеристики материалов (по данным таблицы 2):

твёрдость сердцевины,

твёрдость поверхности зуба,

предел текучести

230…300 НВ

230…300 НВ

600

192…240 НВ

192…240 НВ

450

7 Наиболее вероятная (средняя) твёрдость сердцевины

8 Наиболее вероятная (средняя) твёрдость поверхности

9 Предел контактной выносливости материала, МПа

10 Базовое число циклов нагружения при расчёте по контактным напряжениям

11 Суммарное машинное время работы (ресурс) передачи, часов

12 Фактическое число циклов перемены напряжений зубьев шестерни и колеса за заданный ресурс передачи

13 Коэффициент эквивалентности при расчёте по контактным напряжениям

14 Эквивалентные числа циклов перемены напряжений зубьев шестерни и колеса при расчёте по контактным напряжениям

15 Коэффициент долговечности материалов шестерни и колеса при расчёте по контактным напряжениям

Поскольку эквивалентные числа циклов перемены напряжений NHE1 и NHE2 больше соответствующих базовых значений NHG1 и NHG2, что указывает на работу материалов в зоне длительного предела выносливости, поэтому

16 Коэффициенты запаса прочности при расчёте по контактным напряжениям

При вероятности разрушения Р(t) = 0,98 имеем:

SH1=1,1             SH2=1,1

17 Допускаемые контактные напряжения для шестерни и колеса при расчете на выносливость активных поверхностей зубьев, МПа

18 Расчетное допускаемое контактное напряжение для проектного расчета передачи, МПа

С учётом указаний к формулам (16)… (18) для 1-го варианта термической обработки шестерни и колеса принимаем =424,4

19 Максимальное допускаемое контактное напряжение для проверки прочности зубьев при кратковременных перегрузках, МПа

20 Предел изгибной выносливости материалов, МПа

21 Коэффициент, учитывающий влияние способа получения заготовки

22 Коэффициент, учитывающий влияние шероховатости переходной поверхности между смежными зубьями на их изгибную выносливость

При окончательной механической обработке зубьев – шлифование рабочей и переходной поверхностей зубьев имеем:

23 Коэффициент, учитывающий влияние двухстороннего приложения

Поскольку передача непрерывная, принимаем

24 Коэффициент эквивалентности при расчете по напряжениям изгиба

25 Эквивалентные числа циклов перемены напряжений зубьев шестерни и колеса при расчете по напряжениям изгиба

26 Коэффициенты долговечности материалов шестерни и колеса при расчете по напряжениям изгиба

Поскольку в рассматриваемом материале

то в последующих расчётах с учётом ограничений (26) принимаем минимальное значение коэффициента долговечности, т.е.

27 Коэффициент запаса прочности при расчете по напряжениям изгиба

При вероятности разрушения

Р(t) = 0,98

SF1 = 1,75                    SF2 = 1,75

28 Допускаемые напряжения изгиба зубьев шестерни и колеса при расчете на выносливость, Мпа

29 Максимальные допускаемые напряжения изгиба для проверки прочности зубьев шестерни и колеса при кратковременных перегрузках, МПа

Итоговые результаты определения допускаемых напряжений

для зубчатой передачи

Расчетное допускаемое контактное напряжение для проектного расчета передачи, Мпа

Допускаемые напряжения изгиба при расчете на выносливость, МПа

245

Максимальные контактные напряжения для проверки прочности зубьев при кратковременных перегрузках, МПа

Максимальные допускаемые напряжения изгиба при проверки прочности зубьев при кратковременных перегрузках, МПа


3. Проектный и проверочный расчет цилиндрических зубчатых передач 2-й ступени редуктора

 

3.1 Предварительное значение межосевого расстояния а' передачи из условия контактной выносливости рабочих поверхностей зубьев

 

 мм

где [sH] − расчетное допускаемое контактное напряжение для материалов зубчатой пары, МПа; [sH] = 469,4 МПа;

 − предварительное значение коэффициента нагрузки, = 1,25 (для тихоходной передачи);

 − коэффициент ширины зубчатого колеса, = 0,4.

 мм

Расчетную величину межосевого расстояния а2' округлим до ближайшего стандартного значения а2.

а2 = 200 мм.

3.2 Руководствуясь зависимостями назначается номинальный модуль зацепления m

m = (0,01…0,02) · а = (0,01…0,02) ·200 = (2,0…4,0).

m = 3,0 мм.


3.3 Зададимся предварительным значением угла наклона линии зубьев  на делительном цилиндре в пределах  = 15…210:

3.4 Определим суммарное число зубьев шестерни по зависимости

 

3.5 С учетом стандартных значений нормального модуля зацепления m, межосевого расстояния а и принятого суммарного числа зубьев  находят действительный угол наклона линии зубьев b на делительном цилиндре

 

3.6 Определим ширину b4 и b3 зубчатого колеса и шестерни

b4 = ;

b4 = .

b3 = ;

b3 = .


3.7 Находим коэффициент осевого перекрытия

 

= 1,12;

= 1,12;

= 1,12.

3.8 Вычисляем числа зубьев шестерни Z3 и колеса Z4

;

.

Расчетные значения  и округлим до целых чисел Z3 и Z4:

Z3 = 25; Z4 = 102.

3.9 Фактическое передаточное число передачи

;

.


Это удовлетворяет допускаемым отклонениям передаточного числа в пределах ± 4% от номинального значения.

3.10 Окружная скорость в зацеплении, м/с

 

,

где  − делительный диаметр шестерни.

.

.

.

3.11 Назначаем 9-ю степень точности передачи [3. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Применение коэффициента повышенной амортизации 2 при использовании осовных средств в многосменном режиме
Просмотров:540
Описание: Кочетков Юрий Владимирович, генеральный директор «Бурмистр.ру» Норма Налогового кодекса, позволяющая налогоплательщику применять повышенный коэффициент амортизации в отношении основных средств, эксплуатирую

Название:Генетико-статистический анализ комбинационной способности сортов и форм яровой мягкой пшеницы по коэффициенту хозяйственной эффективности фотосинтеза
Просмотров:823
Описание: КУРСОВАЯ РАБОТА по дисциплине «Генетика популяций и количественных признаков» на тему: «ГЕНЕТИКО-СТАТИСТИЧЕСКИЙ АНАЛИЗ КОМБИНАЦИОННОЙ СПОСОБНОСТИ СОРТОВ И ФОРМ ЯРОВОЙ МЯГКО

Название:Сплавы с особым коэффициентом линейного расширения
Просмотров:462
Описание: Министерство образования и науки, молодежи и спорта Украины Приазовский государственный технический университет Кафедра материаловедениядомашнее задание по дисциплине Специальные стали и сплавы на тем

Название:Расчет коэффициентов ликвидности и финансовой устойчивости на примере предприятия ЧУП "Комета"
Просмотров:418
Описание: Расчёт коэффициентов ликвидности и финансовой устойчивости на примере предприятия ЧУП «Комета» Деятельность Частного торгового унитарного предприятия «Комета» зарегистрирована решением Витебского облис

Название:Определение коэффициента восстановления при ударе твердых тел
Просмотров:380
Описание: ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВОССТАНОВЛЕНИЯ ПРИ УДАРЕ ТВЕРДЫХ ТЕЛ Цель: исследовать центральное соударение тел, проверить выполнение законов сохранения импульса и энергии, определить коэффициент восстановле

 
     

Вечно с вами © MaterStudiorum.ru