Умение ребенка проводить рефлексивное исследование задачи играет существенную роль в обучении их решению. Под рефлексивным исследованием задачи понимается исследование учащимся собственной деятельности по решению задачи: последовательности действий, их правильного выполнения, приобретенного в ходе решения опыта. Базируясь на теории учебной деятельности, разработанной В. В. Давыдовым, можно отметить тот факт, что именно рефлексивное исследование придает математической задаче характер учебной задачи, дополняя ее целым рядом учебных заданий. Сущность и актуальность данного вопроса можно проиллюстрировать известным примером В. В. Давыдова: «Дети, поднимите руки, кто сегодня научился решать задачи в два действия?.. Вижу, почти все научились… А ты, Ваня?» — «А я это и так знал!» — буркнул Ваня, который в начале урока обнаружил полную неспособность решать задачи нового типа, но за 45 минут урока состояние неумения перешло в состояние умения: новое умение «овладело ребёнком» незаметно для него самого. Учитель-то Ваню научил, но учился ли при этом сам ребёнок? Себя, почему-то не справлявшегося с задачей, и себя, почему-то решившего задачу, он просто не заметил. Для задачи — никакого ущерба: она была решена. А для ученика? Каждый следующий класс задач приведёт его в такой же тупик, из которого его снова и снова будет выводить учитель. К экзамену школьник может прийти подготовленный. Но будет ли он готов жить в постоянно меняющемся мире, предполагающим умение постоянно менять себя?».
Одна из проблем теории и практики обучения решению задач связана с заключительным этапом решения задачи — с её исследованием, развитием, преобразованием. Большинство учащихся средней школы (и даже многие учителя математики) считают работу над задачей оконченной, как только ими получен правильный результат (совпадающий с ответом, данным в учебнике, или одобренный учителем); если ответ верен, о данной задаче можно и нужно забыть. Таким образом, учащиеся (а также многие учителя и авторы учебных руководств) забывают об обучающем характере каждой задачи, решаемой в процессе обучения, о том, что всякая решаемая ими задача должна учить их математической деятельности, обогащать их знания и опыт, развивать умение ориентироваться в различных проблемных ситуациях. Этот вопрос представляет особый интерес. Дело в том, что исследование задачи надо рассматривать как центральный этап рефлексивного исследования задачи. Первый этап связан с поиском решения (поисковый этап), а третий — собственно с рефлексивным исследованием. Центральный этап, связанный с исследованием и развитием задачи — исследовательский этап. Исследовательский этап, несомненно, является подготовительным перед собственно рефлексивным исследованием задачи, а в некоторых случаях, даже и началом рефлексивного исследования. Обоснование необходимости этого этапа можно найти во многих работах, посвящённых обучению решения задач. Вот лишь некоторые примеры. Вначале из наставлений учащимся.
«Если вы хотите по-настоящему научиться решать задачи, то анализируйте решения каждой мало-мальски новой и более или менее сложной задачи. Не жалейте на это времени и сил: всё это в будущем окупится. Для школьника решить данную задачу — не главная цель … главное научиться чему- то, связанному с изучением математики, узнать и усвоить новые математические факты, овладеть новыми математическими методами, накопить определённый опыт, научиться мыслить. ............