Курсовая работа
Проекция геометрических объектов
Студент
Преподаватель
2009
Содержание
1. Использование метода секущих плоскостей для создания проекции пересечения поверхностей фигур
2. Использование метода секущих плоскостей для создания разветки пересечения поверхностей фигур
3. Построение изометрии взаимного пересечения поверхностей фигур
4. Создание фигуры с вырезом
5. Процесс создания опоры
6. Процесс создания стойки
1. Использование метода секущих плоскостей для создания проекции пересечения поверхностей фигур
Вспомогательные секущие плоскости применяют для построения линии пересечения поверхностей, которые пересекаются с этими плоскостями по графически простым линиям – прямым и окружностям. Такая возможность существует в трех случаях:
1.Если образующие (окружности) расположены в общих плоскостях уровня.
2.Если в общих плоскостях уровня оказываются прямолинейные образующие линейчатой поверхности и окружности циклической.
3.Линейчатые каркасы заданных поверхностей принадлежат общим плоскостям уровня или пучкам плоскостей общего положения.
При решении задач на построение линии пресечения поверхностей вспомогательные секущие плоскости обычно выбирают в виде плоскостей уровня – плоскостей параллельных плоскостям проекций. Как всегда в таких случаях, построение начинают с нахождения опорных точек линии, т.к. они позволяют видеть, в каких границах можно изменять положение вспомогательных секущих плоскостей. Произвольные же точки кривой строят с помощью указанного способа.
В данной работе пересекаются три поверхности – полусфера, цилиндр и призма.
Полусфера – половина сферы (Сфера радиуса R – множество точек пространства, равноудаленных от одной точки на положительное расстояние R.Сфера является фигурой вращения, т.е образована при вращении криволинейной образующей вокруг неподвижной оси).
Цилиндр - тело, ограниченное замкнутой цилиндрической поверхностью и двумя выделившими ее сечениями – основаниями цилиндра.
Призма – многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а все ребра вне этих граней параллельны между собой.
Линией пересечения поверхностей является множество точек, общих для данных поверхностей. При пересечении полусферы и цилиндра получается эллипс (эллипс – это плоская фигура, у которой для каждой точки сумма расстояний от двух фиксированных точек (фокусов) постоянна), а полусферы и призмы – плоская кривая (это кривая, точки которой не лежат на одной прямой).
Сначала рассмотрим взаимное пересечение полусферы и призмы. Из характера расположения поверхностей следует, что целесообразно применять секущие горизонтальные плоскости уровня. Сперва находим опорные точки прямой. При пересечении первой вспомогательной секущей плоскости ( ) получаем точку 1 . На плоскости П проводим окружность из центра полусферы радиусом равным расстоянию от оси полусферы до точки пересечения вспомогательной секущей плоскости с самой полусферой на плоскости П . При пересечении этой окружности и главного меридиана полусферы получим точку 1 . Аналогично получаем опорную точку 4 и 4 и произвольные точки 2 ,2 и 3 ,3 .( при пересечении вспомогательных секущих плоскостей – а П , а П , а П ). ............