MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Произведения конечных групп, близких к нильпотентным

Название:Произведения конечных групп, близких к нильпотентным
Просмотров:145
Раздел:Математика
Ссылка:Скачать(343 KB)
Описание: Введение Изучение групп, представимых в произведение своих подгрупп является классической задачей алгебры. Изучение факторизуемых групп началось с изучения групп, разложимых в прямое произведение некотор

Часть полного текста документа:

Введение

Изучение групп, представимых в произведение своих подгрупп является классической задачей алгебры.

Изучение факторизуемых групп началось с изучения групп, разложимых в прямое произведение некоторого множества своих истинных подгрупп, т.е. при условиях, когда факторизующие подгруппы инвариантны в факторизуемой группе и пересечение любой из них с произведением остальных равно единице. Еще в XIX веке было установлено, что любая конечная абелева группа разложима в произведение некоторого множества циклических подгрупп (Фробениус и Штикельбергер [1]). В связи с этой теоремой в теорию групп пришел вопрос о конечных неабелевых группах, факторизуемых некоторым множеством своих попарно перестановочных циклических подгрупп. При этом не предлагается ни нормальность факторизующих множителей, ни единичность пересечения каждого из них с произведением остальных. Был установлен ряд свойств конечных групп, имеющих факторизацию такого рода, в частности их сверхразрешимость (теорема Хупперта [2]).

Как известно, конечная нильпотентная группа – это прямое произведение -подгрупп по разным простым  В связи с этим возник вопрос характеризации конечных групп, разложимых в произведение попарно перестановочных -подгрупп по разным простым

Случай, когда группа является произведением своих двух силовских подгрупп, т.е. бипримарной, был рассмотрен еще Берсайдом, который установил их разрешимость. В 1938 году Ф. Холл[28] доказал свою знаменитую теорему о том, что конечная группа тогда и только тогда разложима в произведение попарно перестановочных -подгрупп по разным простым , когда она разрешима.

В связи с этими результатами возник вопрос о строении конечных групп, представимых в произведение своих нильпотентных подгрупп. Ответ на этот вопрос был получен Виландтом[4] и Кегелем[19], которые установили разрешимость таких групп.

Класс конечных групп, представимых в произведение своих двух некоторых нильпотентных подгрупп (кратко, динильпотентных групп) достаточно сложен. Он включает в себя сверхразрешимые группы, бипримарные, метанильпотентные и т.д. и этими примерами он далеко не исчерпывается.

Даже для таких групп связь группы со свойствами подгрупп-множителей достаточно сложная и исследование ее становится весьма непростой задачей.

В последние пятнадцать лет эта связь изучалась в работах многих авторов. Получено немало интересных глубоких результатов и разработаны методы исследования. Естественно, что это направление далеко не исчерпало себя и имеет широкие перспективы.

Настоящая дипломная работа посвящена изучению некоторых свойств конечных разрешимых групп, представимых в виде произведения своих двух -разложимых подгрупп. В дальнейшем, для краткости, группы с таким свойством буем называть ди--разложимые. Рассматриваются только конечные разрешимые группы.

Работа состоит из перечня условных обозначений, реферата, введения, основной части, включающей три раздела, заключения и списка цитируемой литературы.

Первый раздел носит справочный характер. Здесь приведены обозначения, определения и некоторые известные результаты, существенно используемые в работе.

Второй раздел посвящен изложению некоторых результатов о строении групп ди--разложимых групп. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Металлы побочной подгруппы I группы
Просмотров:532
Описание: Российский государственный педагогический университет имени А.И.Герцена Курсовая работа по химии по теме: Металлы побочной подгруппы I группы Работу выполнила студентка первог

Название:Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам
Просмотров:292
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования "Гомельский государственный университет имени Франциска Скорины" Математический факультет Кафедра алгебры и геометрии Доп

Название:Элементарное изложение отдельных фрагментов теории подгрупповых функторов
Просмотров:265
Описание: Министерство образования Республики Беларусь Учреждение образования "Гомельский государственный университет им. Ф. Скорины" Математический факультетКурсовая работа Элементарное изложение отдельн

Название:Характеристика элементов подгруппы азота
Просмотров:236
Описание: МОБУСОШ №2 Реферат по химии на тему: “Характеристика элементов подгруппы азота” Подготовил: Насертдинов К. Проверил (а): Агидель-2008 Содержание 1. Х

Название:Конечные группы с заданными системами слабо нормальных подгрупп
Просмотров:261
Описание: Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный университет им. Ф. Скорины» Математический факультет Кафедра ТВ и матстатистики Курсовая р

 
     

Вечно с вами © MaterStudiorum.ru