MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Производная и ее применение в алгебре, геометрии, физике

Название:Производная и ее применение в алгебре, геометрии, физике
Просмотров:106
Раздел:Математика
Ссылка:Скачать(122 KB)
Описание:Производная функция. Касательная к кривой. Геометрический смысл производной. Зависимость между дифференцируемостью и непрерывностью функции. Производные от элементарных функций. Производная постоянной. Таблица элементарных производных .

Часть полного текста документа:

Производная и ее применение в алгебре, геометрии, физике Научная работа Автор Бирюков Павел Вячеславович. Гимназия №1 города Полярные Зори Январь-май 2004 г. Производная функция
    Поставим своей задачей определить скорость, с которой изменяется величина у в зависимости от изменения величины х. Так как нас интересуют всевозможные случаи, то мы не будем придавать определенного физического смысла зависимости y=f(x), т.е. будем рассматривать величины х и у как математические.
    Рассмотрим функцию y=f(x), непрерывную на отрезке [а, b]. Возьмем два числа на этом отрезке: х и х+?x; первое, х, в ходе всего рассуждения считаем неизменным, ?x - его приращением. Приращение ?x; аргумента обусловливает приращение ?у функции, причем:
    ?y=f(x+?x)-f(x). (I)
    Найдем отношение приращения ?у функции к приращению ?x аргумента:
    ?у/?x=(f(x+?x)-f(x))/ ?x. (II)
    По предыдущему, это отношение представляет собой среднюю скорость изменения у относительно х на отрезке
    [x, x+?x].
    Будем теперь неограниченно приближать ?x к нулю.
    Для непрерывной функции f(x) стремление ?x к нулю вызывает стремление к нулю ?у, отношение (II) становится при этом отношением бесконечно малых, вообще величиной переменной. Пусть это переменное отношение (II) имеет вполне определенный предел(утверждать, что определенный предел отношения ?x/?у всегда существует нельзя), обозначим его символом f '(х).
    
    (III)
    С физической точки зрения этот предел есть значение скорости изменения функции f(x) относительно ее аргумента при данном значении х этого аргумента. В анализе этот предел называют производной данной функции в точке х.
    Определение. Производной данной функции в точки х называется предел отношения приращения этой функции к приращению аргумента в точке х, когда приращение аргумента стремится к нулю.
    2°. Пусть каждому значению аргумента х соответствует определенное значение скорости изменения функции f(x). Тогда скорость f '(х) есть новая функция аргумента х, она называется производной функцией от данной функции f(x).
    Например, производная функция от квадратной функции Q=bt+at2 есть линейная функция Q' = b + 2at.
    3°. Производная функция обозначается так: 1) у данной функции ставится штрих на том месте, где обычно помещается показатель степени, или 2) перед обозначением
    данной функции ставится символ d/dx.
    Если данная функция обозначена буквой у, то ее производная может быть обозначена:
    1) у', читать: "производная функции у",
    или
    2) dy/dx, читать: "дэ игрек по дэ икс".
    Если данная функция обозначена символом f(x), то ее производная может быть обозначена:
    1) f '(х), читать: "производная функции f(x)",
    или же
    2) df(x)/dx, читать: "дэ эф от икс по дэ икс".
    4°. Нахождение производной от данной функции называется дифференцированием данной функции.
    Общее правило дифференцирования (нахождения производной) следующее:
    1) найти приращение ?y функции, т. е. разность значений функции при значениях аргумента x + ?x и x;
    2) найти отношение ?y/?x, для этого полученное выше равенство разделить на ?x;
    3) найти предел отношения ?y/?x при ?x >0.
    Пример. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Мифология. Функции мифа. Мифологические школы
Просмотров:729
Описание: Мифология как мир первообразов и материя духовности Но для создателей мифологии она была не просто достоверной или истинной. У них и вопроса не могло возникнуть об истинности. Для первобытного человека мифология

Название:Общественные функции СМИ. По кн. Введение в журналистику
Просмотров:820
Описание: Цвик В. Л. Для чего существует журналистика? Зачем она нужна отдельному индивиду и обществу в целом? Иными словами, каковы социальные функции СМИ? Сразу условимся, что термин "функции” мы будем понимать как разн

Название:Понятие, задачи, система и основные функции органов внутренних дел
Просмотров:706
Описание: Органы внутренних дел представляют собой сложную, разветвленную систему, в которую входят в качестве ее функциональных элементов (подсистем) милиция, пожарная охрана, внутренние войска, следственный аппарат и др. О

Название:Функции культурных норм
Просмотров:646
Описание: Культурные нормы выполняют в обществе очень важные функции. Они являются обязанностями и указывают меру необходимости в человеческих поступках; служат ожиданиями в отношении будущего поступка; контролируют откл

Название:Психологическая теория деятельности: действия и цели; операции; психофизиологические функции
Просмотров:448
Описание: Гиппенрейтер Ю.Б. Психологическая теория деятельности была создана в советской психологии и развивается уже на протяжении более 60 лет. Она обязана работам советских психологов: Л.С. Выготского, С.Л. Рубинштейна, А

 
     

Вечно с вами © MaterStudiorum.ru