Часть полного текста документа:Производная и ее применение в алгебре, геометрии, физике Научная работа Автор Бирюков Павел Вячеславович. Гимназия №1 города Полярные Зори Январь-май 2004 г. Производная функция Поставим своей задачей определить скорость, с которой изменяется величина у в зависимости от изменения величины х. Так как нас интересуют всевозможные случаи, то мы не будем придавать определенного физического смысла зависимости y=f(x), т.е. будем рассматривать величины х и у как математические. Рассмотрим функцию y=f(x), непрерывную на отрезке [а, b]. Возьмем два числа на этом отрезке: х и х+?x; первое, х, в ходе всего рассуждения считаем неизменным, ?x - его приращением. Приращение ?x; аргумента обусловливает приращение ?у функции, причем: ?y=f(x+?x)-f(x). (I) Найдем отношение приращения ?у функции к приращению ?x аргумента: ?у/?x=(f(x+?x)-f(x))/ ?x. (II) По предыдущему, это отношение представляет собой среднюю скорость изменения у относительно х на отрезке [x, x+?x]. Будем теперь неограниченно приближать ?x к нулю. Для непрерывной функции f(x) стремление ?x к нулю вызывает стремление к нулю ?у, отношение (II) становится при этом отношением бесконечно малых, вообще величиной переменной. Пусть это переменное отношение (II) имеет вполне определенный предел(утверждать, что определенный предел отношения ?x/?у всегда существует нельзя), обозначим его символом f '(х). (III) С физической точки зрения этот предел есть значение скорости изменения функции f(x) относительно ее аргумента при данном значении х этого аргумента. В анализе этот предел называют производной данной функции в точке х. Определение. Производной данной функции в точки х называется предел отношения приращения этой функции к приращению аргумента в точке х, когда приращение аргумента стремится к нулю. 2°. Пусть каждому значению аргумента х соответствует определенное значение скорости изменения функции f(x). Тогда скорость f '(х) есть новая функция аргумента х, она называется производной функцией от данной функции f(x). Например, производная функция от квадратной функции Q=bt+at2 есть линейная функция Q' = b + 2at. 3°. Производная функция обозначается так: 1) у данной функции ставится штрих на том месте, где обычно помещается показатель степени, или 2) перед обозначением данной функции ставится символ d/dx. Если данная функция обозначена буквой у, то ее производная может быть обозначена: 1) у', читать: "производная функции у", или 2) dy/dx, читать: "дэ игрек по дэ икс". Если данная функция обозначена символом f(x), то ее производная может быть обозначена: 1) f '(х), читать: "производная функции f(x)", или же 2) df(x)/dx, читать: "дэ эф от икс по дэ икс". 4°. Нахождение производной от данной функции называется дифференцированием данной функции. Общее правило дифференцирования (нахождения производной) следующее: 1) найти приращение ?y функции, т. е. разность значений функции при значениях аргумента x + ?x и x; 2) найти отношение ?y/?x, для этого полученное выше равенство разделить на ?x; 3) найти предел отношения ?y/?x при ?x >0. Пример. ............ |