MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Коммуникации и связь -> Расчет жесткого стержня

Название:Расчет жесткого стержня
Просмотров:223
Раздел:Коммуникации и связь
Ссылка:Скачать(232 KB)
Описание: Содержание 1. Задание 2. Схема нагруженного стержня 3. Исходные данные 4. Построение системы линейных алгебраических 5. Вывод формул проверки, достоверности вычисления опорных реакций 6. Вывод рабочих фор

Часть полного текста документа:

Содержание

1. Задание

2. Схема нагруженного стержня

3. Исходные данные

4. Построение системы линейных алгебраических

5. Вывод формул проверки, достоверности вычисления опорных реакций

6. Вывод рабочих формул определение внутренних усилий стержня

7. Численный метод решения СЛАУ - метод Гаусса

8. Обоснование применения метода Гаусса

9. Блок - схема алгоритма

10. Программа

12. Анализ результатов

Литература


1. Задание

Построить математическую модель расчета опорных реакций жесткого стержня с тремя опорными узлами и определение внутренних усилий, поперечной силы Q и изгибающего момента М, возникающих во внутренних сечениях стержня под действием нагрузки. Разработать алгоритм и составить программу вычисления опорных реакций и распределения вдоль оси стержня внутренних усилий.

Вариант - 82-4г. Схема - 2.

Численный метод решения СЛАУ - метод Гаусса.

2. Схема нагруженного стержня


    
    
    


    
    

    
       P1, P2-сосредоточенная сила, Н

q4 - интенсивность распределенной нагрузки, H/м

C1, C2 - отрезок балки, м

L1, L2 - пролет балки, м

М1, M2 - круговой момент, Hм


3. Исходные данные

P1=15kH             P2=30kH                      L1=6м        L2=12м

M1=10kHм         M2=35kHм                            С1=3м        C2=2м

L1=6м                 L2=12м                         q4=10kH


    
    
    


    

Y


    

    
      


4. Построение системы линейных алгебраических

уравнений для определения опорных реакций.

Преобразуем исходную систему:

отбросим опорные стержни и заменим их опорными

реакциями (R1; R2; R3)

интенсивность распределённой нагрузки заменим эквивалентной

силой (F4 = q4c2)

зададим систему координат.


    
    
    


    

X


    

    
      

Для вывода формул вычисления опорных реакций запишем уравнение равновесия стержня: сумма моментов относительно опорной точки стержня равна нулю.

:

 

Представил уравнения равновесия балки в форме системы линейных алгебраических уравнений (СЛАУ).

Матричная форма записи СЛАУ вычисление опорных реакций балки

AR=B

А - матрица коэффициентов при неизвестных

R - матрица неизвестных

В - матрица свободных членов

 

5. Вывод формул проверки, достоверности вычисления опорных реакций

Для проверки правильности вычисления опорных реакций использовал уравнения равновесия балки, сумма проекций всех сил действующих на балку равна нулю.

Y=R1-P1+R2=0

X=R3-P2-F4=0

6. Вывод рабочих формул определение внутренних усилий стержня

На рассматриваемом стержне выделим четыре участка длиной S (длина отрезка от начала до точки сечения стержня), для которых составим формулы для вычисления внутренних усилий: поперечной силы Q и изгибающего момента М.

s - отрезок от начала до точки сечения балки

I cечение

II cечение

III cечение

IV cечение

В точках границ , ,организуем вычисления поперечной силы Q слева (и QQ справа), изгибающего момента М слева (и MМ справа) от рассматриваемых точек.

1 точка границ:

 

2 точка границ:

3 точка границ:

7. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  
 
     

Вечно с вами © MaterStudiorum.ru