MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Коммуникации и связь -> Распространение волн в световодах

Название:Распространение волн в световодах
Просмотров:377
Раздел:Коммуникации и связь
Ссылка:Скачать(170 KB)
Описание: РАСПРОСТРАНЕНИЕ ВОЛН В СВЕТОВОДАХ 1. Падение плоской волны на границу раздела двух сред Рассмотрим плоскую границу раздела двух сред с различными диэлектрическими прониц

Часть полного текста документа:

РАСПРОСТРАНЕНИЕ ВОЛН В СВЕТОВОДАХ


1. Падение плоской волны на границу раздела двух сред

Рассмотрим плоскую границу раздела двух сред с различными диэлектрическими проницаемостями и . Индексы i, r, t – относятся к падающей, отраженной и прошедшей волнам.

1.1 Нормальное падение

Для простоты напряженности поля плоской волны будем рассматривать как скалярные величины, подразумевая, что соответствующие векторы направлены так, как показано на рис. 1 (в начальный момент напряженность  направлена в сторону отрицательного направления оси y, а напряженность  – в сторону положительного направления оси z).

Волновые сопротивления и компоненты поля связаны следующими соотношениями

.                                                                            (1)

Рис. 1. − Отражение плоской волны от границы раздела двух сред при

нормальном падении

Знак “–“ для отраженной волны появляется вследствие учета изменения направления распространения волны и принятой скалярной формы записи компонент поля.

На границе раздела должны выполняться условия непрерывности касательных составляющих электрического и магнитного полей

.                                                                                  (2)

Последние выражения позволяют получить полезное соотношение

.

При отражении волны в среде 1 от границы со средой 2 полное волновое сопротивление (волновое сопротивления для полного поля) равно волновому сопротивлению среды 2.

Из (1) и (2) легко получить коэффициенты отражения и прохождения для напряженности электрического поля:

.                                                                        (3)

Учитывая выражения для показателей преломления

получаем классические формулы

,                                                                                            (4)

где .


Выражение для вектора Пойнтинга и (3) позволяют получить формулы для коэффициентов отражения и прохождения по мощности

,

Прямые вычисления показывают, что

,

и это находится в полном согласии с законом сохранения энергии.

 

1.2 Произвольное падение на границу раздела

В этом случае необходимо рассмотреть два случая: Е – поляризации и Н- поляризации, которые отличаются ориентацией вектора Е падающей волны. При Е поляризации вектор в плоскости падения лежит вектор Е, а при Н поляризации – вектор Н. Однако рассмотрения двух случаев можно избежать, если воспользоваться принципом двойственности для уравнений Максвелла, согласно которому система уравнений Максвелла инвариантна относительно замены .

Этот принцип в нашем случае позволяет:

а) найти коэффициенты отражение и прохождения для магнитных полей, зная эти коэффициенты для электрических полей,

б) получить соответствующие выражения для случая Е поляризации, зная выражения для Н поляризации и наоборот.

Поэтому ниже мы рассмотрим только случай Н поляризации.


Рис. 2. − Наклонное падение плоской волны

Для упрощения процедуры нахождения R и T при наклонном падении плоской волны на границу раздела воспользуемся ещё одним соображением. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  
 
     

Вечно с вами © MaterStudiorum.ru