Отдел образования администрации Центрального района
Муниципальное общеобразовательное учреждение
Средняя общеобразовательная школа № 4
Секция математика
НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА
По теме
Разбиение натурального ряда
Сорока Александра Александровна
Василькова Евгения Сергеевна
Учащихся 11 В класса МОУ СОШ №4
Центрального района
8-905-958-2583
8-913-954-3357
Руководитель: Тропина Наталья
Валерьяновна,
Кандидат педагогических наук
доцент кафедры математического анализа
НГПУ
(работа выполнена в МОУ СОШ №4)
Новосибирск 2008г.
Содержание
Введение
§1. Основные понятия и определения
§2. Две последовательности. Их свойства
§3. Упражнения
§4. Геометрическая интерпретация
§5. Некоторые приложения (Палиндромы)
Заключение
Список литературы
рациональный иррациональный число
ВВЕДЕНИЕ
Целью данной работы является изучение вопроса о разбиениях натурального ряда на две непересекающиеся возрастающие последовательности.
Работа состоит из пяти параграфов:
Первый параграф посвящен понятиям и определениям, которые пригодятся нам в работе.
Во втором параграфе идет речь о построении двух последовательностей и о гипотезе Акулича.
В третьем параграфе приведены упражнения.
Четвертый параграф посвящен геометрической интерпретации построения последовательностей.
В пятом параграфе приведены некоторые приложения.
§1 Основные понятия и определения
Целая и дробная части числа
Определение 1. Целой частью числа x называется наибольшее целое число r, не превышающее x.
Целая часть числа x обозначается символом [x] или (реже) E(x) (от фр. entier "антье" — целый).
Если x принадлежит промежутку
[r; r +1),
где r — целое число, то [x]=r, т.е. x находится на промежутке [ [x]; [x]+1). По свойствам числовых неравенств, разность x-[x] будет на промежутке [0; 1).
Определение 2. Число q = x - [x] называют дробной частью числа x и обозначают {x}. Следовательно, дробная часть числа всегда неотрицательна и не превышает 1, тогда как целая часть числа может принимать как положительные значения, так и неположительные. Таким образом {x} = x - [x], а, следовательно, x = [x] + {x}.
Примеры
[5]=5 [7,2]=7 [-3]=-3 [-4,2]=-5 [0]=0 {5}=0 {7,2}=0,2 {-3}=0 {-4,2}=0,8 {0}=
Свойство целой части
[x+n] = [x]+n
где n – натуральное число
Рациональные и иррациональные числа и их свойства
Определение 3.Рациональным числом называется число, которое можно представить в виде дроби
где m – целое число, а n – натуральное.
Определение 4. Если число не представимо в виде , то такое число называется иррациональным.
Теорема 1. Любое рациональное число представимо в виде конечной или бесконечной периодической дроби.
Любое иррациональное число представимо в виде бесконечной десятичной непериодической дроби.
Примеры
0,5=-рациональное число
0,(3)= - рациональное число
1,0123456789101112…-иррациональное число
- иррациональное число
Свойства арифметических действий над рациональными и иррациональными числами
1. Если - рациональные числа, то , , , , - рациональные числа.
Дано: Доказательство
; - рациональное
2. Если r-рациональное число, -иррациональное число, то
- иррациональные числа.
Доказательство: (от противного)
Предположим что
но - противоречие
3. Если ,то про ничего определенного нельзя сказать.
Примеры
§2 Две последовательности. ............