Содержание
Введение
1. Основы технологии DWDM
1.1 Устройства волнового уплотнения DWDM
1.2 Модель взаимодействия DWDM с транспортными технологиями
1.3 Классификация WDM на основе канального плана
2. Сравнение систем мультиплексирования и выбор компонентов линии связи
2.1 Параметры многоволновых мультиплексных линий связи
2.2 Технологии мультиплексирования
2.3 Источники излучения. Лазерные диоды
2.4 Реализация усилителей EDFA
2.5 Выбор одномодового оптического волокна для проектируемой ВОЛС
3. Влияние дисперсии на параметры проектируемой ВОЛС
3.1 Методы компенсации дисперсии
3.2 Выбор волокна для компенсации дисперсии
4. Расчет длины регенерационного участка
4.1 Расчет длины регенерационного участка с учетом хроматической дисперсии
4.2 Расчет длины регенерационного участка с учетом поляризационно-модовой дисперсии (PMD)
4.3 Расчет эксплуатационного запаса по затуханию
4.4 Расчет длины волокна компенсации дисперсии
5. Моделирование 8-ми канальной DWDM линии с применением системы автоматизированнного проектирования LinkSim
5.1 Описание компонентов моделируемой ВОЛС и их параметров
5.2 Результаты моделирования 8-ми канальной DWDM
6. Подбор промышленного оборудования для проектируемой ВОЛС
6.1 Характеристики промышленных мультиплексоров DWDM
6.2 Подбор транспортной системы проектируемой линии связи
6.3 Подбор оптического кабеля для проектируемой линии связи
7. Прокладка оптического кабеля
Экономическая часть
Техника безопасности
Заключение
Список литературы
Приложение
Введение
В развитых странах волоконно-оптическая связь заняла лидирующее положение среди других средств связи. Ее отличительной чертой является значительно более высокая скорость передачи информации и более высокая надежность по сравнению с проводной электросвязью и радиосвязью. Именно эти качества обусловили быстрое развитие волоконно-оптических систем связи за последние 10-15 лет. В настоящее время в мире проложено уже более 100 млн. км таких линий связи. Более того, все континенты связаны подводными волоконно-оптическими линиями связи, общая длина которых превышает 300 тыс. км. Разрабатываются и испытываются волоконно-оптические системы связи нового поколения с пропускной способностью в десятки и сотни Гбит/с, а в перспективе - до нескольких Тбит/с. Эти системы используют новые принципы передачи информации - оптические солитоны и спектральное разделение каналов, а также принципиально новую элементную базу, основанную на новых материалах и современных технологиях.
Разработка систем передачи информации нового поколения, прежде всего, вызвана потребностями экономики. Известно, что для увеличения вдвое национального валового продукта необходимо обеспечить 4-кратное увеличение объема передаваемой информации.
Сегодняшний этап развития волоконно-оптических систем связи в мире характеризуется серьезным технологическим прорывом в области элементной базы, позволившим совершить значительный скачок в повышении пропускной способности ВОЛС. На повестке дня стоит вопрос о практическом внедрении ВОЛС с пропускной способностью 1 Тбит/с и более.
Важнейшими элементами высокоскоростных волоконно-оптических сетей являются передающие и приемные модули, модуляторы, широкополосные оптические усилители, компенсаторы дисперсии, демультиплексоры и коммутаторы.
Успехи в технологии создания высококачественных источников излучения и фотодетекторов для высокоскоростных ВОЛС позволили удовлетворить практически все современные потребности пользователей и операторов сетей связи в широком диапазоне скоростей. ............