СИСТЕМИ ЛІНІЙНИХ РІВНЯНЬ
1. Основні поняття і теореми
Постановка задачі. Потрібно знайти значення х1, х2, … , хn , що задовольняють таким співвідношенням: .
Тут aij (i = 1, 2, … , m; j = 1, 2, … , n) і bk (k = 1, 2, … , m) – задані числа.
При цьому: ; ; .
Матриця А називається головною матрицею системи, вектор b – вектором-стовпцем правих частин, вектор x – вектором-стовпцем невідомих.
Використовуючи ці позначки, можна систему записати в матричній формі: Ах = b.
Якщо b1 = b2 = ¼ = bm = 0, то система рівнянь називається однорідною. Якщо хоча б одне з bk (k = 1, 2, ¼ , m) відмінне від нуля, то система називається неоднорідною.
.
Матриця називається розширеною матрицею системи.
Якщо система має хоча б один розв’язок, то вона називається сумісною.
При цьому система, що має єдиний розв’язок, називається визначеною, а більше одного розв’язку – невизначеною.
Якщо система не має розв’язків, то вона називається несумісною.
При розв’язуванні систем лінійних рівнянь має бути знайдена відповідь на три запитання:
А. Чи сумісна система?
В. Чи визначена система?
С. Як знайти розв’язок (чи розв’язки) системи, якщо вони існують?
Правило Крамера. Якщо неоднорідна система рівнянь невироджена (detА ¹ 0), то система визначена, тобто має єдиний розв’язок, і його можна знайти за формулами Крамера: (k = 1, 2, … , n) де Dk – визначник матриці, яку можна одержати, якщо в матриці А системи k-й стовпець замінити на стовпець вільних членів.
Ранг матриці. З розв’язуванням систем рівнянь безпосередньо пов'язане поняття рангу матриці. Ранг матриці – це найвищий порядок її мінора, відмінного від нуля.
Для того щоб знайти ранг матриці, важливо орієнтуватися в тому, які перетворення з матрицею можна робити, не змінюючи при цьому її ранг:
1) транспонування;
2) перестановка двох рядків (стовпців);
3) множення всіх елементів рядка (або стовпця) на число a ¹ 0;
4) додавання до всіх елементів рядка (стовпця) відповідних елементів іншого рядка (стовпця);
5) вилучення нульового рядка (стовпця);
6) викреслення рядка (стовпця), що є лінійною комбінацією інших рядків (стовпців).
Однорідні системи. Розглядається однорідна система лінійних рівнянь з n невідомими: Ах = 0.
Якщо rangА = n (detА ¹ 0), то система визначена і має тільки тривіальний розв’язок: x1 = x2 = … = xn = 0.
Якщо rangА < n (detА = 0), то система має не тільки тривіальні розв’язки. При цьому всі розв’язки однорідної системи рівнянь утворюють лінійний простір L і dim L = n – rangА.
Щоб знайти базис простору розв’язків однорідної системи рівнянь, треба:
1.Знайти базисний мінор матриці А.
2.Якщо рядок не входить до базисного мінора, то рівняння, яке йому відповідає, є лінійною комбінацією інших рівнянь, і його можна не брати до уваги.
3.Якщо стовпець не входить у базисний мінор, то невідома з відповідним номером призначається вільною. Усього знайдеться (n – rang A) вільних невідомих.
4.Нехай вільні невідомі хr+1, хr+2, … , хn. Якщо дати вільним невідомим довільні значення, то одержимо неоднорідну систему рівнянь відносно хr+1, хr+2, … , хn , у якої визначник не дорівнює нулю, і, отже, система має єдиний розв’язок.
5.Дамо вільним невідомим значення (1, 0, 0, 0, … , 0), потім (0, 1, 0, 0, … , 0) і т. ............