Содержание Задание на курсовую работу
1. Системы счисления
2. Перевод числа из одной системы в другую
3. Машинное представление информации
4. Числа с фиксированной точкой
4.1 Прямой код
4.2 Обратный код, инверсный или дополнительный "до 1"
4.3 Дополнительный или дополнительный "до 2" код
5. Схема алгоритма
6. Программная реализация алгоритма
6.1 Общие сведения
6.2 Описание использованных функций и процедур
Библиографический список
Приложение
Рязанская государственная радиотехническая академия
Кафедра САПР вычислительных средств
Задание на курсовую работу по дисциплине " Информатика"
студентке группы 246
Тема: Системы счисления и коды
Срок представления работы к защите: 20 мая 2003г.
Задание:
Разработать программу, которая выполняет следующие действия:
1. Считывает из файла два числа;
2. Переводит эти числа в заданную систему счисления;
3. Выполняет арифметические действия в заданной системе счисления;
4. Переводит полученные результаты в исходную систему счисления и выводит их в файл.
Форма представления исходных данных и результатов Система счисления для исходных данных и результатов Система счисления для выполнения арифметических действий Выполняемые арифметические действия Целые числа со знаком шестнадцатеричная Двоичная, дополнительный код Сложение вычитание
Руководитель работы_________________.
Задание выдано 200 г.
Задание принято к исполнению________.
1. Системы счисления
Системой счисления называется совокупность приемов наименования и записи чисел. В любой системе счисления для представления чисел выбираются некоторые символы (их называют цифрами), а остальные числа получаются в результате каких-либо операций над цифрами данной системы счисления. Система называется позиционной, если значение каждой цифры (ее вес) изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число.
Число единиц какого-либо разряда, объединяемых в единицу более старшего разряда, называют основанием позиционной системы счисления. Если количество таких цифр равно P, то система счисления называется P-ичной. Основание системы счисления совпадает с количеством цифр, используемых для записи чисел в этой системе счисления.
Запись произвольного числа x в P-ичной позиционной системе счисления основывается на представлении этого числа в виде многочлена
x = anPn + an-1Pn-1 + ... + a1P1 + a0P0 + a-1P-1 + ... + a-mP-m
Арифметические действия над числами в любой позиционной системе счисления производятся по тем же правилам, что и десятичной системе, так как все они основываются на правилах выполнения действий над соответствующими многочленами. При этом нужно только пользоваться теми таблицами сложения и умножения, которые соответствуют данному основанию P системы счисления. В электронных вычислительных машинах применяют позиционные системы счисления с недесятичным основанием: двоичную, восьмеричную, шестнадцатеричную и некоторые другие. Наибольшее распространение в вычислительных машинах имеет двоичная система счисления. ............