Часть полного текста документа:Статистический анализ показателей использования производственных ресурсов Н. Леонова, Е. Марголин Настоящее сообщение является второй частью исследования, посвященного оценке обеспеченности полиграфических предприятий производственными ресурсами и экономической отдачи от их использования. В предлагаемой работе изучается зависимость выручки от реализации продукции (далее - выручка), от размеров затрат производственных ресурсов на основе моделей производственных функций. В классической постановке производственной функции в качестве производственных факторов выступают капитал, труд и земля. В выполненном исследовании роль капитала отведена собственному капиталу предприятий, роль труда - численности работающих, роль земли - производственным площадям предприятий. Информационную основу составляют данные годовых бухгалтерских отчетов полиграфических предприятий системы МПТР России за 2001 год и - в части производственных площадей - сведения из базы данных полиграфических предприятий, сформированной в Министерстве. Cтатистический анализ зависимости выручки от реализации продукции, от затрат производственных ресурсов Производственная функция Производственная функция описывает взаимосвязь используемых факторов производства с объемом выпуска продукции (2). Производственная функция может быть построена для отдельно взятого предприятия, группы предприятий, отрасли или национальной экономики в целом (3). Уравнение многофакторной производственной функции имеет общий вид: Q = f(x1, x2, ..., xm), где Q - объем выпускаемой продукции (в нашем случае - выручка), m - число факторов производства, включенных в модель, x1, x2, ..., xm - численная характеристика факторов производства. В качестве факторов производства при рассмотрении производственных функций выступают обычно ресурсы, используемые для создания продукции. Отношение Q/xi следует расценивать как выпуск продукции, приходящийся на единицу i-го ресурса, или как среднюю производительность i-го ресурса. Предельная производительность i-го ресурса есть частная производная dQ/dxi,, которая всегда положительна, так как невозможно представить себе применение какого-то ресурса, направленное на сокращение объемов производства. Если соотнести предельную и среднюю производительность, то из нижеследующего выражения dQ/dxi : Q/ xi можно определить относительную производительность i-го ресурса, показывающую, на сколько процентов изменится объем выпуска продукции, если величина i-го фактора производства (использование i-го ресурса) изменится на 1%. Относительную производительность иначе называют эластичностью выпуска по данному фактору производства. Если соотнести предельные производительности по i-му и k-му факторам производства (iєk): dQ/dxi:dQ/dxk , то полученное соотношение dxi/dxk будет характеризовать так называемую предельную норму замещения ресурсов. Другими словами, если существует принципиальная возможность замены одного ресурса другим, то количество заменителя можно определить, применяя показатель предельной нормы замещения ресурсов. Из многообразия математических зависимостей, которые могут быть использованы для построения производственных функций, выберем две - линейную и степенную. ............ |