Часть полного текста документа:Структура и состав анодно-искровых покрытий на вентильных металлах В.Ф.Борбат, О.А.Голованова, А.М.Сизиков, Омский государственный университет, кафедра неорганической химии В последнее время получил распространение электрохимический метод нанесения тугоплавких защитных покрытий, основанный на использовании явления анодного искрового разряда. Анодно-искровая технология является результатом развития традиционного анодирования. При некоторых значениях напряжения возникают качественные изменения процесса, которые заключаются в резком увеличении электронной составляющей тока, протекающего через границу раздела электролит-оксид и оксид-металл, и появлении многочисленных электрических пробоев пленки. Это приводит к существенному повышению температуры в каналах пробоя и окружающих их участках, благодаря чему рост покрытий значительно ускоряется. Параллельно в каналах пробоя образуется низкотемпературная плазма, в которой протекают реакции, приводящие к включению в оксид компонентов электролита. Таким образом, следствием пробоя при высоких напряженностях поля являются, с одной стороны, ускорение процесса образования оксида, с другой - изменение физических и химических свойств получаемого покрытия [1]. Химический, фазовый состав и механические свойства анодно-искровых покрытий близки к свойствам обычной керамики. Они характеризуются твердостью, жаропрочностью, стойкостью к истиранию, высокими электроизоляционными и антикоррозионными свойствами. Весьма привлекательной представляется возможность их нанесения на изделия из легкоплавких металлов, что с помощью традиционной обжиговой технологии недостижимо. Большее распространение в промышленности получил метод нанесения оксидных покрытий в серной кислоте. Анализ анодно-искровых покрытий показывает, что в них, наряду с оксидами металла подложки, в больших количествах содержатся атомы или группы атомов, входящих в состав электролита [1]. Внедрение ионов электролита определяется природой электролита, связано с механизмом формирования и многочисленными анодными процессами (электрохимическими, химическими, адсорбционными, процессами ионного обмена и др.), протекающими на поверхности пленки, в порах и объеме оксида. Вклад каждого из этих процессов зависит от условий формирования и концентрации электролита . В связи с изложенным представлялось важным исследовать состав покрытий, получаемых плазменно-электролитическим оксидированием, на алюминии, титане и тантале в серной кислоте. Для изучения фазового состава образцов по их межплоскостным расстояниям был проведен рентгенофазовый анализ. Рентгенограммы образцов были получены методом порошка и пленки на установке "Дрон-3" в монохроматизированном "медном" излучении. Для определения элементного состава получаемых анодно-искровым методом покрытий и изучения распределения химических элементов по поверхности исследуемых образцов был проведен рентгеноспектральный анализ. Рентгенограммы образцов были получены методом пленки на установке МАР-3. 1. Результаты и их обсуждение. Исследование поверхности титанового электрода, полученного в условиях : I = 0,3 А,И = 120 В,t = 900 сек. (концентрация кислоты варьировалась от 10 до 50 %), показало, что, кроме оксида титана(III) (в двух модификациях: анатаз и рутил), на поверхности существует сульфат титана (III). ............ |