MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Теорема о неподвижной точке

Название:Теорема о неподвижной точке
Просмотров:308
Раздел:Математика
Ссылка:Скачать(30 KB)
Описание: Содержание Введение 1.  Теорема о неподвижной точке 2.1 Неподвижная точка и отношения эквивалентности 2.2 Системный трюк: ещё одно доказательство 2.3 Несколько замечаний 3. Практическая часть Заключен

Часть полного текста документа:

Содержание

Введение

1.  Теорема о неподвижной точке

2.1 Неподвижная точка и отношения эквивалентности

2.2 Системный трюк: ещё одно доказательство

2.3 Несколько замечаний

3. Практическая часть

Заключение

Список литературы


Введение

Рекурсивные функции (от позднелатинского recursio - возвращение), название, закрепившееся за одним из наиболее распространённых вариантов уточнения общего понятия арифметического алгоритма, т.е. такого алгоритма, допустимые исходные данные которого представляют собой системы натуральных чисел, а возможные результаты применения являются натуральными числами. Рекурсивные функции были введены в 30-х гг. 20 в. С.К. Клини, в свою очередь основывавшимся на исследованиях К. Гёделя, Ж. Эрбрана и др. математиков.

Теорема (Клини) о неподвижной точке является основным инструментом исследования в теории рекурсивных функций. Это глубокий результат в том смысле, что он даёт изящный и экономичный метод обращения с конструкциями, что в ином случае потребовало бы долгих и сложных рассуждений.

Эта теорема может быть приведена в нескольких формах и может рассматриваться с нескольких точек зрения. В определённом смысле теорема суммирует некоторый класс диагональных методов, включая метод, используемый для построения рекурсивно-перечислимых, но не рекурсивных множеств. С другой стороны, эта теорема устанавливает некоторый результат о неподвижной точке и, подобно теоремам о неподвижной точке из математического анализа, может быть использована для доказательства существования многих неявно заданных функций.


1. ТЕОРЕМА О НЕПОДВИЖНОЙ ТОЧКЕ

1.1 Неподвижная точка и отношения эквивалентности

Теорема 1. Пусть U — главная вычислимая универсальная функция для класса вычислимых функций одного аргумента, a h — произвольная всюду определённая вычислимая функция одного аргумента. Тогда существует такое число n, что Un = Uh(n), то есть n и h(n) — номера одной функции.

Другими словами, нельзя найти алгоритма, преобразующего программы, который бы по каждой программе давал другую (не эквивалентную ей). Эту теорему называют теоремой Клини о неподвижной точке или теоремой о рекурсии.

Рассмотрим произвольное отношение эквивалентности (которое мы будем обозначать x  у) на множестве натуральных чисел. Мы покажем, что следующие два свойства этого отношения не могут выполняться одновременно:

Для всякой вычислимой функции f существует всюду определённая вычислимая функция g, являющаяся её -продолжением (это означает, что если f(x) определено при некотором x, то g(х)  f(x)).

Существует всюду определённая вычислимая функция h, не имеющая -неподвижной точки.

Если x  у — отношение равенства (x = у), то второе свойство выполнено (положим, например, h(n) = n + 1), поэтому не выполнено первое. Теорема о неподвижной точке получится, если x = у понимать как Ux = Uy (x и y — номера одной и той же функции). В этом случае выполнено первое свойство, как мы сейчас убедимся, и потому не выполнено второе.

Почему выполнено первое свойство? Пусть f — произвольная вычислимая функция одного аргумента. Рассмотрим функцию V(n, x) = U(f(n), x). Поскольку U является главной универсальной функцией, найдётся всюду определённая функция s, для которой V(n, x) = U(s(n),x) при всех n и х. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Технические параметры выполнения произвольных программ высококвалифицированными батутистами
Просмотров:763
Описание: на различных соревнованиях Аспирантка, заслуженный мастер спорта С. В. Баландина Аспирантка, заслуженный мастер спорта И. В. Караваева Кубанский государственный университет физической культуры, спорта и туризма,

Название:На чем писать программы? (краткий обзор возможностей языков программирования)
Просмотров:784
Описание: Сергей Трофимов Сегодня мы продолжаем разговор на тему какой язык программирования выбрать, начатый с статье “Delphi или Visual C++ - вот в чем вопрос”. Тема оказалась глубже, чем казалось на первый взгляд, и я провел нек

Название:Когда прекращать тестирование программ?
Просмотров:725
Описание: С.Трофимов Никто не сомневается в необходимости тестирования программ. Будь то небольшой учебный пример или целая информационная система. Вопрос только в том, сколько нужно тестировать и когда можно считать про

Название:Усадьба Марьино: вековые традиции и современная функция
Просмотров:308
Описание: Андрей Ильин Дворцово-парковый ансамбль усадьбы Марьино, которому в сентябре 2011 года исполнится 200 лет, стал одним из последних шедевров великого русского зодчего А. Н. Воронихина. Вместе с И. Ф. Колодиным, С. П. Лук

Название:Разработка технологической программы выращивания цветочных культур (нарцисс и цикламен)
Просмотров:791
Описание: Содержание выращивание цветок агроэксплуатационная характеристика Введение 1. Производственно-экономическая характеристика хозяйства, природно-климатические особенности зоны 2. Агроэксплуатационная ха

 
     

Вечно с вами © MaterStudiorum.ru