Боги создают Законы, люди – теории.
Теория о бесконечности простых чисел-близнецов.
Простое число- это целое положительное число больше единицы, которое не делится без остатка ни на одно другое целое положительное число, кроме единицы и самого себя.
Все остальные числа составные. Можно ещё назвать их сложными, так как первые у нас называются простые.
Простые числа-близнецы, это числа, находящиеся на расстоянии друг от друга в 2 единицы.
Простое число имеет в себе функцию F1:
F1 = Q1 : Q1 + Q1 : 1. (Q1 – простое число).
Сложное число имеет в себе две функции – F1 и F2:
F2 = Q2 : ( 1 + 1.. ). (Q2 - сложное число).
Значит: Q1 = F1, а Q2 = F1 + F2. Независима может быть функция F1. F2 – только в паре с первой функцией. Если бы на определённом этапе роста всех чисел, исчезло простое число, то, осталась бы одна функция. И не F2, и не F1, а F3:
F3 = Q3 : Q3…..1. (Q3 – безликое число. Сложное же есть там, где есть простое, то есть функция простого.)
Как видим, по нашим понятиям, которые есть у нас теперь, сложное не может быть без наличия простого. Такие доводы, которые здесь приводятся, скорее всего, философские. Теперь мы имеем и другие.
2200 лет тому назад Евклид, доказал существование бесконечного множества простых чисел. Его рассуждение можно уложить в одну фразу: если бы имелось лишь конечное число простых, то можно было бы их перемножить и, прибавив единицу, получить число, которое не делится ни на одно простое, что невозможно. В XVIII веке Эйлер доказал более сильное утверждение, а именно что ряд, составленный из величин, обратных простым, расходится, т.е. его частичные суммы становятся с ростом количества слагаемых больше любого заданного числа. В его доказательстве была использована функция
То, что простых чисел бесконечно много, ещё говорит и то, что мы можем высчитать их количество на определённой цифровой дали. Джоунз, Лэл и Бландон приводят данные о действительном количестве простых чисел и простых чисел-близнецов в этом и в некоторых других интервалах той же длины около больших степеней десяти. Видно, что реальные значения очень хорошо согласуются с ожидаемым результатом.
Интервал [n, n + 150 000] Число простых Число простых-близнецов ожидаемое фактическое ожидаемое фактическое n = 100 000 000 8142 8154 584 604 n = 1 000 000 000 7238 7242 461 466 n = 10 000 000 000 6514 6511 374 389 n = 100 000 000 000 5922 5974 309 276 n = 1 000 000 000 000 5429 5433 259 276 n = 10 000 000 000 000 5011 5065 211 208 n = 100 000 000 000 000 4653 4643 191 186 n = 1 000 000 000 000 000 4343 4251 166 161
Мы можем даже установить очень большое простое число:
p число цифр в числе p Год открытия кто открыл
2127 – 1
39 1876 Люка
(2148 + 1)/17
44 1951 Феррье
114(2127 – 1) + 1
180(2127 – 1)2 + 1
41
79
1951 Миллер + Уиллер + EDSAC 1
2521 – 1
2607 – 1
21279 – 1
22203 – 1
22281 – 1
157
183
386
664
687
1952 Лемер + Робинсон + SWAC
23217 – 1
969 1957 Ризель + BESK
24253 – 1
24423 – 1
1281
1332
1961 Хурвитц + Селфридж + IBM 7090
29689 – 1
29941 – 1
211213 – 1
2917
2993
3376
1963 Гиллис + ILIAC 2
219937 – 1
6002 1971 Таккермэн + IBM 360
Бесконечность простых чисел для нас уже факт. ............