ТЕОРИЯ ОПТИМАЛЬНОГО ПРИЕМА СИГНАЛОВ
1 Основные положения теории оптимального приема сигналов
Прием сигналов – одна из наиболее сложных теоретических и инженерных задач передачи сообщений. Сложность состоит в том, что в пункте приема сообщения необходимо извлекать из модулированных сигналов-переносчиков, которые в процессе прохождения по линии связи не только ослабляются, но и подвергаются воздействиям различных искажающих факторов и помех.
Весьма желательно располагать методами приема, которые были бы наилучшими (оптимальными) в данных конкретных условиях. Направление, связанное с отысканием таких методов, называется теорией оптимального приема.
Теоретической основой решения задач оптимального приема является теория Байеса.
Пусть некоторая случайная физическая величина, которую назовем причиной, может принимать множество значений(исходов) П с плотностью вероятностей р(П), которая считается априорной(заранее известной). Пусть причина вызывает появление другой случайной величины – следствия С, которое также может принимать множество значений. Плотность вероятностей этих значений зависит от конкретных исходов причины. Поэтому ситуация описывается множеством условных плотностей вероятностей р(С/П).
Статистическим решением называют процедуру, которая состоит в том, чтобы, наблюдая конкретное следствие , указывать вызвавшую его причину . Так как наблюдаемое следствие может быть вызвано любым исходом причины П, то можно определить плотность вероятностей всех возможных исходов, которые могли вызвать данное следствие, т.е. определить функцию р(П/). Эта функция называется апостериорной (послеопытной, установленной на основе имевшего место опыта или наблюдения) плотностью вероятностей причин.
Основой для принятия статистического решения является теорема Байеса
(1)
где р(С/П) – условная плотность распределения следствий;
р(С) – безусловная плотность распределения следствий С, определяемая как
.
Значение этого интеграла не зависит от П, поскольку интегрирование по этой переменной ведется по всей области ее существования Г.
Из (1) следует, что апостериорная плотность вероятностей причины р(П/С) зависит от априорной плотности вероятностей причины р(П) и условной плотности вероятностей следствий р(С/П). плотность р(С/П) является функцией П, ее называют функцией правдоподобия.
В теории статистических решений показано, что при принятии решения о конкретном значении действовавшей причины , вызвавшей наблюдаемое (или заданное) следствие , наименьшую ошибку можно совершить, если выносить решение в пользу того значения причины, при которой условное распределение р(П/) имеет наибольшее значение. Такое правило принятия решения называется байесовским.
Если априорная плотность р(П) неизвестна, то самое большее, что можно сделать – предположить равномерность ее распределения. Тогда решение будет выноситься в пользу того значения причины , при котором функция правдоподобия р(С/П) для наблюдаемого следствия принимает наибольшее значение. Это означает, что такое значение причины считается наиболее правдоподобным среди других возможных значений. Подобная процедура принятия решения называется правилом максимального правдоподобия.
Применим изложенный подход к решению задачи оптимального приема сигналов.
Суть процедуры оптимального приема. ............