Контрольная работа
по дисциплине
«Теория телетрафика»
Законы распределения случайной величины
Таблица1 Исходные данные
Вариант
Емкость АТС
Nнх
Nкв
Cнх
Tнх
Cкв
Tкв
N1 ГИ
Тип блока 1ГИ 9 8000 3200 4800 3,4 120 1,1 140 1200 80*120*400
Задание 1
1.Построить огибающую распределения вероятности занятия линий в пучке из v , на каждую из которых поступает интенсивность нагрузки а, при условии, что:
а) N ≈ v;
6) N>>v;
в) N, v → ∞.
2. Для каждого используемого распределения рассчитать среднее число занятых линий и их дисперсию.
Для расчета число линий в пучке определить из следующего выражения:
(целая часть полученного числа), где NN - номер варианта.
Средняя интенсивность нагрузки, поступающей на одну линию:
для NN ≤15:а = 0,15+0,05(15-NN); для 15 < NN ≤ 25:а= 0,05 +0,05(26-NN).
Примечания.
Для огибающей распределения привести таблицу значений Рi, и i
В распределении Пуассона привести шесть - восемь составляющих, включая значения вероятности для i=[Y] (целая часть числа Y); Y = a*v
Решение
а) Распределение Бернулли (биноминальное распределение) при N ≤ v имеет вид:
,
где можно рассматривать как вероятность занятия любых i линий в пучке из v;
- числоо сочетаний из
а – средняя интенсивность поступающей нагрузки на одну линию v – линейного пучка от N источников а =0,15+0,05(15-NN)= 0,15+0,05(15-9)=0,45
v – число линий в пучке
Рисунок1 Биноминальное распределение
Математическое ожидание и дисперсия числа занятых линий, вероятность занятия которых описывается распределением Бернулли, соответственно равны:
б) Распределение Эрланга используется при N>>v и имеет вид:
где - вероятность занятия любых i линий в пучке из v.
Y – средняя интенсивность нагрузки Y=a*v=0,45*9=4,05
Рисунок 2 Распределение Эрланга
Математическое ожидание и дисперсия числа занятых линий, вероятность занятия которых подчиняется распределению Эрланга, соответственно равны:
в) Распределение Пуассона используется при N, v → ∞ и имеет вид:
где Y – средняя интенсивность нагрузки Y=a*v=0,45*9=4,05
Рисунок 3 Распределение Пуассона
Математическое ожидание и дисперсия числа занятых линий, в бесконечном пучке линий равны между собой и вычисляются по формуле:
Потоки вызовов. Основные свойства и характеристики
Задание 2
На коммутационную систему поступает простейший поток вызовов с интенсивностью Y.
1. Рассчитать вероятности поступления менее k вызовов за промежуток времени [0, t*): Pk(t*), где t*= 0,5; 1,0; 1,5; 2,0.
2. Построить функцию распределения промежутков времени между двумя последовательными моментами поступления вызовов. F(t*), где t*= 0; 0,1; 0,2; ...
3. Рассчитать вероятность поступления не менее k вызовов за интервал времени [0, t*): Pi³k{t*), где t*= 1.
Примечание:
Для расчета значения Y и v взять из задания 1. Число вызовов k определить из выражения: k = [v/2] - целая часть числа.
Для построения графика, рассчитать не менее пяти значений F(t*). Результаты расчета привести в виде таблицы значений F(t*) и t*.
Расчет членов суммы Pi³k{t*) провести не менее, чем для восьми членов суммы.
Решение
1. Вероятность поступления менее k вызовов за промежуток времени [0, t*): Pk(t*), где t*= 0,5; 1,0; 1,5; 2,0; вычислим по формуле:
, где k =0, 1, 2,....;
Y=4,5; v=9 – из первого задания; k=v/2=9/2=4,5=5
Рисунок 4 График распределения вероятности
2. Найдем и построим значения функции распределения промежутков времени между двумя последовательными моментами поступления вызовов по формуле:
, где t*= 0; 0,1; 0,2; ...
График функции распределения
Рисунок 5 График функции распределения
t* 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 F(t*) 0,0 0.362 0.593 0.741 0.835 0.895 0.933 0.957 0.973 0.983
Таблица 2 Результаты расчета
3. Рассчитаем вероятность поступления не менее k вызовов за интервал времени [0, t*): Pi³k{t*), где t*= 1, по формуле:
;
Телефонная нагрузка и ее параметры
Задание 3
1. ............