MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Теория управления

Название:Теория управления
Просмотров:81
Раздел:Математика
Ссылка:Скачать(392 KB)
Описание:1. Общая постановка задачи управляемости.
Для задачи ОУ характерно наличие динамического объекта. Динамический объект- объект, состояние которого меняется со временем. Состояние любого динамического объекта

Часть полного текста документа:

22. Принцип максимума Понтрягина на языке опорных функций. Рассматриваем динамический объект, поведение которого описывается системой (1) , x- n-мерный вектор, , .Задано , u: I и полагается, что u(t) измеримо и - где k(t) скалярная функция интегрируемая по Лебегу на отрезке I . В фазовом пространстве заданы два не пустых множества. Допустимое управление u(t) на отр.I осуществляете переход из начального мн-ва в конечное множество , если существует решение уравнения (1), удовлетворяющее граничным условиям и . Цель управления- перевод динамический объекта из в , а качество определяет функционал. Таким функционалом явл. время, следовательно задача быстродействия заключается в нахождении такого допустимого управления, которое осуществляет переход из множества в за наименьшее время. (4). , где -ненулевая вектор-функция. , . Если -оптимальное управление, переводящее , то . Для нашей задачи : . удовлетворяет принципу максимума Понтрягина на , если существует не нулевая вектор -функция. , удовлетворяющая системе с нач. условием , такая что выполняется условие: 1) -здесь достигается максимум. 2); 3). Теорема о необходимых условиях оптимальности. Если в линейной задаче быстродействия мн-ва выпуклы, -оптимальное управление, переводящее на отр. , а -соответствующая траектория, то пара удовлетворяет принципу максимума Понтрягина. 23. Применение необходимых условий оптимальности(схема и пояснения к ней). Рассматриваем динамический объект, поведение которого описывается системой (1) , x- n-мерный вектор, , A-матрица nxn, u имеет ту же размерность, что и , .Задано , u: I и полагается, что u(t) измеримо и - где k(t) скалярная функция интегрируемая по Лебегу на отрезке I .Функция u(t)- называется допустимым управлением, если измерима и является однозначной ветвью из многозначного отображения U u(t)U(t) - ограничения на управления . В фазовом пространстве заданы два не пустых множества , -выпуклы. Допустимое управление u(t) на отр.I осуществляете переход из начального мн-ва в конечное множество , если существует решение уравнения (1), удовлетворяющее граничным условиям и . Цель управления- перевод динамический объекта из в , а качество определяет функционал. Таким функционалом явл. время, следовательно задача быстродействия заключается в нахождении такого допустимого управления, которое осуществляет переход из множества в за наименьшее время.. Пусть оптимальное управление, -соответствующая траектория, переводящая за время I . И - ненулевая функция, такая что (2). 1)(3); 2)(4); 3)(5) Найти :
    
     24. Достаточное условие оптимальности. ( Вначале написать вопрос "Применение необходимых условий оптимальности(схема и пояснения к ней") Для линейной задачи существует дост. условие. Для этого необходимо выполнение дополнительных условий: усиление условия трансверсальности 4) решение удовлетворяет усиленному условию трансверсальности на на отр., если для (6). Достаточное условие: если допустимое управление, -соответствующая траектория, переводящая за время I и пара удовлетворяет принципу максимума Понтрягина (2-5) и усиленному условию трансверсальности (6), то - оптимальное управление. Следствие из теоремы достаточного условия трансверсальности. Используем локальную управляемость: .Если некоторое допустимое управление, а - соответствующее решение (1), переводящее за время I, удовлетворяет принципу максимума Понтрягина и объект явл. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Управление муниципальными финансами
Просмотров:103
Описание: ВВЕДЕНИЕ Необходимым условием жизнеспособности местного самоуправления является наличие достаточной экономической и финансовой базы для его осуществления. Без этого какое-либо реальное, а не фиктивное, ме

Название:Вимірювання складу речовини для підтримування оптимального технологічного процесу на теплових електричних станціях
Просмотров:281
Описание: ВСТУП На теплових електричних станціях та у котельнях централізованого теплопостачання для підтримування оптимального технологічного процесу необхідно визначити склад багатьох речовин. Бо тільки за наявно

Название:Управление персоналом как механизм реализации государственной кадровой политики
Просмотров:65
Описание:   Управление персоналом как механизм реализации государственной кадровой политики   Система управления персоналом: концепция, принципы, методы   Система управления

Название:Управление финансами коммерческого банка на примере АКБ "Собин Банк"
Просмотров:129
Описание: Содержание Введение Глава 1 .Теоретические основы управления финансами коммерческого банка 1.1 Экономическая сущность и понятие финансов коммерческого банка 1.2 Концепция управления пассивами в разрезе

Название:Управление персоналом в организации
Просмотров:98
Описание: Содержание Введение 1. Теоретические вопросы управления персоналом в организации 1.1 Сущность, значение, функции управления персоналом в организации 1.2 Этапы управления персоналом в организации 2. Анали

 
     

Вечно с вами © MaterStudiorum.ru