MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Коммуникации и связь -> Типовые одиночные сигналы

Название:Типовые одиночные сигналы
Просмотров:86
Раздел:Коммуникации и связь
Ссылка:Скачать(4342 KB)
Описание: БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра ЭТТ   РЕФЕРАТ на тему:   «Типовые одиночные сигналы» МИНСК, 2008 Рассмо

Часть полного текста документа:

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

 

РЕФЕРАТ

на тему:

 

«Типовые одиночные сигналы»

МИНСК, 2008


Рассмотрим наиболее широко распространенные типы одиночных радиосигналов: простой прямоугольный радиоимпульс, линейно-частотно-модулированный (ЛЧМ) радиоимпульс, кодо-фазо-манипулированный (КФМ) радиоимпульс.

Простой прямоугольный радиоимпульс длительностью Т0 показан на рис. 1.

Его аналитическое представление

,

где

Рис. 1. Простой прямоугольный радиоимпульс.

Рис. 2. Закон модуляции простого прямоугольного радиоимпульса.


Рис. 3. Спектр простого прямоугольного радиоимпульса.

Рис. 4. Энергетический спектр простого прямоугольного радиоимпульса.

Закон модуляции Uo(t) показан на рис. 2.

Обратим внимание, что фазовая или частотная модуляция внутри радиоимпульса отсутствует

.

Спектр простого прямоугольного радиоимпульса имеет форму функции (sin x)/x (рис.3):

Энергетический спектр имеет форму функции  (рис. 4):

Корреляционная функция простого прямоугольного радиоимпульса имеет треугольную форму (рис.5):

Время корреляции (рис. 5), и ширина спектра (рис. 4) определяются , ,

Функция неопределенности простого прямоугольного радиоимпульса

Рис. 5. Корреляционная функция простого прямоугольного радиоимпульса.

Рис. 6. Диаграмма неопределённости простого прямоугольного радиоимпульса.

Рис. 7. Прямоугольный ЛЧМ сигнал.

Соответствующая диаграмма неопределённости простого прямоугольного радиоимпульса показана на рис. 6.

Проявлением принципа неопределённости в случае простого прямоугольного радиоимпульса является невозможность уменьшить ширину основного лепестка функции неопределённости одновременно и вдоль оси времени τ, и вдоль оси частот F. Как следует из рис. 6, сужение функции неопределённости по τ за счёт уменьшения длительности радиоимпульса неизбежно приводит к расширению её вдоль оси F.

Линейно-частотно-модулированный (ЛЧМ) радиоимпульс с прямоугольной огибающей длительностью Т0 показан на рис. 7.

Частота внутри такого радиоимпульса изменяется по линейному закону на величину частотной девиации ∆fm, за время длительности сигнала Т0 (рис. 8):

,          

Линейному закону частотной модуляции соответствует квадратичный закон фазовой модуляции (рис.9):

 

Спектр прямоугольного ЛЧМ радиоимпульса

можно найти, преобразовав показатель экспоненты

Рис. 8. Закон частотной модуляции ЛЧМ радиоимпульса.

Рис. 9. Закон фазовой модуляции ЛЧМ радиоимпульса.

Рис. 10. Амплитудно-частотный и энергетический спектры прямоугольного ЛЧМ радиоимпульса при .

и осуществив переход к новой переменной интегрирования

Тогда

Где  - косинус-интеграл Френеля,

 - синус-интеграл Френеля,

Анализ соответствующего G0(ω) амплитудно-частотного спектра

показывает, что по мере увеличения произведения ∆fмТ0 рассматриваемый спектр в полосе частот от -π∆fм до π∆fм становится более равномерным, а его спад на границах полосы более крутым. Это позволяет приближённо считать амплитудно-частотный, а вместе с ним и энергетический спектры закона модуляции анализируемого сигнала при больших произведениях ∆fмТ0 прямоугольными (рис. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Прохождение амплитудно-модулированных колебаний и радиоимпульсов через одиночный контур и систему связанных колебательных контуров
Просмотров:153
Описание: Министерство образования Российской Федерации Новгородский государственный университет имени Ярослава Мудрого Кафедра '' Радиофизика и Электроника '' ПРОХОЖДЕНИЕ АМПЛИТУДНО-МОДУЛИРОВАННЫХ КОЛЕБ

 
     

Вечно с вами © MaterStudiorum.ru