MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Точные методы решения систем линейных алгебраических уравнений (СЛАУ)

Название:Точные методы решения систем линейных алгебраических уравнений (СЛАУ)
Просмотров:62
Раздел:Математика
Ссылка:Скачать(36 KB)
Описание: Реферат на тему: Точные методы решения систем линейных алгебраических уравнений (СЛАУ) Введение Данная лабораторная работа включает в себя два точных метода решения систем линейных алгебраических урав

Часть полного текста документа:


Реферат

на тему:

Точные методы решения систем линейных алгебраических уравнений (СЛАУ)


Введение

Данная лабораторная работа включает в себя два точных метода решения систем линейных алгебраических уравнений (СЛАУ):

Метод Гаусса.

Метод Холецкого.

Также данная лабораторная работа включает в себя: описание метода, применение метода к конкретной задаче (анализ), код программы решения вышеперечисленных методов на языке программирования Borland C++ Builder 6.

Описание метода:

Метод решения СЛАУ называют точным (прямым), если он позволяет получить решение после выполнения конечного числа элементарных операций. К прямым методам относят метод Крамера, метод Гаусса, метод Холецкого и другие. Основным недостатком прямых методов является то, что для нахождения решения необходимо выполнить большое число операций.

Сначала рассмотрим наиболее распространённый метод решения СЛАУ - метод Гаусса, состоящий в последовательном исключении неизвестных.

Пусть дана система уравнений

 (1)

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому виду:


где kn, aii 0, i=, аii - главный элемент системы.

На втором этапе (обратный ход) идет последовательное определение неизвестных из этой ступенчатой системы.

Прямой ход.

Положим а11 0, если а11 = 0, то первым в системе запишем уравнение, в котором а11 0.

Расставим уравнения системы таким образом, чтобы коэффициент при х1 имел наибольшее значение (другими словами отсортируем систему по убыванию).

Преобразуем систему, исключив неизвестное х1 во всех уравнениях, кроме первого (используя элементарные преобразования системы). Для этого умножим обе части первого уравнения на  и сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения на  и сложим с третьим уравнением системы. Продолжая этот процесс, получаем систему

Здесь  (i, j = ) - новые значения коэффициентов и правых частей, которые получаются после первого шага.

Аналогичным образом, считая главным элементом 0, исключим неизвестное х2 из всех уравнений системы, кроме первого и второго, и т.д. Продолжаем этот процесс пока это возможно.

Если в процессе приведения системы (1) к ступенчатому виду появятся нулевые решения (равенства вида 0=0) их отбрасывают. Если же появится уравнение вида 0=bi, а bi 0, то это говорит о несовместимости системы.

Второй этап (обратный ход) заключается в решении ступенчатой системы. В последнем уравнении этой системы выражаем первое неизвестное xk через остальные неизвестные (xk+1, …, xn). Затем подставляем значение xk в предпоследнее уравнение системы и выражаем xk-1 через (xk+1, …, xn), затем находим xk-2, …, x1.

Теперь рассмотрим второй точный метод решения СЛАУ - метод Холецкого (метод квадратных корней).

Он применяется в случае, если матрица системы является симметричной и положительно определенной. В основе метода лежит алгоритм специального LU-разложения матрицы А, где L - нижняя треугольная матрица, а U - верхняя треугольная матрица (если главный минор не равен 0, то существует разложение, причем оно единственно).

Разбиение матрицы А= на верхнюю и нижнюю к примеру будет выглядеть так

L = и U =.

В результате преобразований матрица А приводится к виду A= (где  - транспонированная матрица). ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Понятие системы и системного подхода к познанию
Просмотров:142
Описание: Содержание 1. Понятия "системный подход" и "система" 2. Логические основы системного подхода Список используемой литературы Введение В различных областях науки и техники широко используе

Название:Использование финансов для решения социальных проблем
Просмотров:56
Описание: СОДЕРЖАНИЕ Введение 1. Расходы государства на социальные нужды 1.1 Сущность расходов государства на социальные нужды 1.2 Группы расходов на социальные нужды 2. Финансовые методы повышения жизненного уро

Название:Экономическое содержание системы расходов бюджета
Просмотров:61
Описание: Содержание Введение 1. ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ФОРМИРОВАНИЯ РАСХОДОВ БЮДЖЕТА 1.1 Понятие и сущность бюджета 1.2 История возникновения бюджета 2 СОДЕРЖАНИЕ СИСТЕМЫ РАСХОДОВ БЮДЖЕТА 2.1 Классификация расход

Название:Принципы и сущность системы налогов и сборов в Российской Федерации
Просмотров:57
Описание: Содержание   Введение Сущность налогов и сборов Принципы построения системы налогов и сборов Классификация налогов и сборов А. Федеральные налоги и сборы Б. Региональные налоги и сборы В. Местные н

Название:Проектирование транспортной системы нового города
Просмотров:165
Описание: Введение В курсовой работе рассматривается вариант проектирования транспортной системы нового города. В качестве исходных параметров принимаются: численность населения города, уровень легковой и грузовой

 
     

Вечно с вами © MaterStudiorum.ru