Введение.
Центральная предельная теорема (ЦПТ) имеет огромное значение для применений теории вероятностей в естествознании и технике. Ее действие проявляется там, где наблюдаемый процесс подвержен влиянию большого числа независимых случайных факторов, каждый из которых лишь ничтожно мало изменяет течение процесса. Наблюдатель, следящий за состоянием процесса в целом, наблюдает лишь суммарное действие этих факторов. Эта схема поясняет также исключительное место, которое нормальное распределение занимает среди других вероятностных распределений.
Случайные величины
Случайной одномерной величиной, или просто случайной величиной, называют любую числовую функцию, определенную на пространстве элементарных событий .
Пример. Рассмотрим пространство элементарных событий, которое получается в результате независимых бросаний двух монет. В этом примере пространство элементарных событий состоит из четырех элементарных событий, которым сопоставляется вероятность 1/4. Определим теперь на этом пространстве случайную величину, равную числу гербов, появившихся при бросании двух монет. Очевидно, что значения случайной величины есть 0, 1, 2, и случайная величина принимает эти значения с вероятностями 0, 25, 0, 5, 0, 25, соответственно.
Так как случайная одномерная величина представляет собой числовую функцию на пространстве элементарных событии, то любая числовая функция от случайной величины в соответствии с определением также является случайной величиной.
Функция распределения вероятностей случайной величины
Определение. Функцией распределения вероятностей, или просто функцией распределения (иногда применяют термин кумулятивная функция распределения) случайной величины , называется функция F(х), равная для любого значения x вероятности события:
P(ξ<x)=F(x);
Из определения легко вывести свойства функции распределения:
На рис. 1 приведен график функции распределения вероятностей случайной величины из примера.
Рис. 1. Функция распределения F(x) случайной величины из первого примера.
Случайные дискретные величины
Различаются два типа случайных величин: дискретные, принимающие конечное или счетное число значений, и непрерывные, принимающие все значения на некотором непрерывном промежутке числовой оси.
Определение. Случайной дискретной величиной называется случайная величина, принимающая конечное или счетное множество значений х0, х1, x2, ... .
Обозначим множество всех возможных значений, которые принимает дискретная случайная величина , через x0, х1, х2, ..., а вероятности, с которыми принимает эти значения, - через р0, р1, р2, ... . Тогда Σpi = 1.
Распределение случайной дискретной величины будет полностью описано, если указать для любого i вероятность рi того, что случайная величина принимает значение xi, т.е. Функция распределения F(x) дискретной случайной величины при этом оказывается равной
Таким образом, F(x) - ступенчатая функция, равная постоянной на любом интервале, не содержащем точек xi, и имеющая в каждой точке xi скачок вверх на величину pi.
Таким образом, чтобы задать дискретную случайную величину , достаточно описать множество всех возможных значений случайной величины x0, х1, х2, ..., а также указать числа рi такие, что
Наиболее распространенными формами представления дискретных случайных величин являются табличная
и графическая (рис. ............