Часть полного текста документа:Цепочка Галилея В книге Галилея "Беседы и математические доказательства...", напечатанной впервые на итальянском языке в голландском городе Лейдене в 1638г., предлагался, между прочим, такой способ построения параболы: "Вобьём в стену два гвоздя на одинаковой высоте над горизонтом и на таком расстоянии друг от друга, чтобы оно равнялось двойной ширине прямоугольника, на котором желательно построить полупараболу; между одним и другим гвоздём подвесим тонкую цепочку, которая свешивалась бы вниз и была такой длины, чтобы самая низкая точка её находилась от уровня гвоздя на расстоянии, равном высоте прямоугольника (рис. 1). Цепочка эта, свисая, расположится в виде параболы, так что, отметив её след на стене пунктиром, мы получим параболу, рассекаемую пополам перпендикуляром, проведённым через середину линии, соединяющей оба гвоздя". Способ этот прост и нагляден, но не точен. Это понимал и сам Галилей. На самом деле, если параболу построить по всем правилам, то между нею и цепочкой обнаружатся зазоры. Они видны на том же рис. 1, где соответствующая парабола обозначена сплошной линией. Цепная линия. Только через полвека после выхода книги Галилея старший из двух братьев-математиков Бернулли - Якоб нашёл чисто теоретическим путём точную формулу провисающей цепочки. Не спеша сообщать своё решение задачи, он бросил вызов другим математикам. Правильное решение опубликовали уже в следующем 1691г. Христиан Гюйгенс, Готфрид Вильгельм Лейбниц и младший брат Якоба - Иоганн Бернулли. Все они пользовались для решения задачи, во-первых, законами механики, а во-вторых, могучими средствами недавно разработанного тогда математического анализа - производной и интегралом. Гюйгенс назвал кривую, по которой располагается цепочка, подвешенная за два конца, цепной линией. Так как цепочки бывают разной длины, да и концы их могут подвешиваться на разных расстояниях друг от друга - то ближе, то дальше, то и цепных линий существует не одна, а много. Но все они подобны между собой, как, например, подобны между собой любые окружности. График показательной функции. Оказалось, что разгадка секрета цепной линии лежит в показательной функции. В XVIII веке она была ещё новинкой, а теперь её должен знать каждый восьмиклассник. Это функция вида y=ax, где a - какое-либо положительное число, не равное 1. Вычисления показали, что для построения цепной линии удобнее всего принять a равным так называемому неперову числу, обозначаемому буквой e. Оно получило своё имя в честь шотландского математика Джона Непера - одного из изобретателей логарифмов. Число это почти столь же знаменито, как и число ?; его приближённое значение, взятое с точностью до 0,0005:e?2,718. На рис. 2 сплошной линией изображен график показательной функции y=ex, а пунктиром - график другой показательной функции, тесно связанной с предыдущей. Если воспользоваться отрицательными показателями степеней, то последнюю функцию можно представить в виде y=e-x. Теперь ясно, что оба графика симметричны друг другу относительно оси ординат, что и обнаруживает рисунок. Образуем теперь две новые функции, беря для каждого x либо полусумму значений наших показательных функций - получим y=1/2 (y=ex+e-x), либо их полуразность: y=1/2 (y=ex-e-x). ............ |