Министерство образования и науки РФ
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Всероссийский заочный финансово-экономический институт
Филиал в г. Туле
Контрольная работа
по дисциплине «Эконометрика»
Тула - 2010 г.
Содержание
Задача 1
Задача 2 (а, б)
Задача 2 в
Задача 1
По предприятиям легкой промышленности получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (Х, млн. руб.) табл. 1.
Табл. 1.1.
Х 33 17 23 17 36 25 39 20 13 12 Y 43 27 32 29 45 35 47 32 22 24
Требуется:
1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков ; построить график остатков.
3. Проверить выполнение предпосылок МНК.
4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (α=0,05).
5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F-критерия Фишера (α=0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости α=0,1, если прогнозное значение фактора Х составит 80% от его максимального значения.
7. Представить графически: фактические и модельные значения Y, точки прогноза.
8. Составить уравнения нелинейной регрессии:
гиперболической;
степенной;
показательной.
Привести графики построенных уравнений регрессии.
9. Для указанных моделей найти коэффициенты детерминации и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.
Решение
1. Линейная модель имеет вид:
Параметры уравнения линейной регрессии найдем по формулам
Расчет значения параметров представлен в табл. 2.
Табл. 1.2.
t y x yx
1 43 33 1419 1089 42,236 0,764 0,584 90,25 88,36 0,018 2 27 17 459 289 27,692 -0,692 0,479 42,25 43,56 0,026 3 32 23 736 529 33,146 -1,146 1,313 0,25 2,56 0,036 4 29 17 493 289 27,692 1,308 1,711 42,25 21,16 0,045 5 45 36 1620 1296 44,963 0,037 0,001 156,25 129,96 0,001 6 35 25 875 625 34,964 0,036 0,001 2,25 1,96 0,001 7 47 39 1833 1521 47,69 -0,69 0,476 240,25 179,56 0,015 8 32 20 640 400 30,419 1,581 2,500 12,25 2,56 0,049 9 22 13 286 169 24,056 -2,056 4,227 110,25 134,56 0,093 10 24 12 288 144 23,147 0,853 0,728 132,25 92,16 0,036 ∑ 336 235 8649 6351 12,020 828,5 696,4 0,32 Средн. 33,6 23,5 864,9 635,1
Определим параметры линейной модели
Линейная модель имеет вид
Коэффициент регрессии показывает, что выпуск продукции Y возрастает в среднем на 0,909 млн. руб. при увеличении объема капиталовложений Х на 1 млн. руб.
2. Вычислим остатки , остаточную сумму квадратов , найдем остаточную дисперсию по формуле:
Расчеты представлены в табл. 2.
Рис. 1. График остатков ε.
3. ............