MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Властивості лінійних операторів та їх застосування при розв’язанні задач. Матриця лінійного оператора

Название:Властивості лінійних операторів та їх застосування при розв’язанні задач. Матриця лінійного оператора
Просмотров:229
Раздел:Математика
Ссылка:Скачать(226 KB)
Описание: КУРСОВА РОБОТА "Властивості лінійних операторів та їх застосування при розв’язанні задач. Матриця лінійного оператора" Запоріжжя 2010 1.  Поня

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

КУРСОВА РОБОТА

"Властивості лінійних операторів та їх застосування при розв’язанні задач. Матриця лінійного оператора"

Запоріжжя 2010


1.  Поняття лінійного оператора. Алгебраїчні операції над операторами

Нехай  і  два різних лінійних простору над полем комплексних чисел. Відображення , яке ставляє у відповідність кожному вектору  простору  деякий вектор  простору , будемо називати оператором , діючий із  в . Якщо  є образом вектора , то пишуть .

Оператор  називається лінійним, якщо виконуються дві умови:

1.  (властивість адитивності);

2.  (властивість однорідності);

Тут довільно взяті вектори простору , довільно комплексне число.

Позначимо через  множина всіх лінійних операторів, діючих із  в . Два лінійних оператора  і  будемо вважати рівними, якщо для будь – якого вектору  простору . Визначимо тепер операцію додавання із множини  і операцію множення оператора на число. Під сумою двох лінійних операторів  і  розуміють оператор  такий, що для будь – якого вектора  простору

.

Під добутком лінійного оператора  на комплексне число  розуміють оператор  такий, що для любого вектора  простору

Неважко переконатися в тому, що оператори  і  лінійні.

Оператор  називається нульовим, якщо для будь – якого вектору  простору  .

Щоб переконатися, що оператор  лінійний і, як наслідок, належності множині , потрібно показати, що для довільно взятих векторів  простору  мають місце рівності  і . Так як будь – якому вектору простору  оператор  ставить у відповідність вектор , то  . Як наслідок, - лінійний оператор.

Введемо поняття оператора, протилежному лінійному оператору . Оператор –  називається протилежним оператором , якщо . Неважко перевірити, що для довільно взятого оператору  із  і що  лінійний оператор.

Введені на множині  лінійні операції над її елементами (операторами) мають такі властивості:

1.,

2. ,

3. існує один лінійний оператор  такий, що для будь – якого лінійного оператора  із  

4. для кожного оператора  існує єдиний оператор –  такий, що .

Із перелічених властивостей лінійних операцій над елементами множини  випливає, що множина  по відношенню до операції суми операторів є адитивною абелевою групою. Операція множення на число має такі властивості  .

Всі перелічені властивості лінійних операцій над елементами множини  дозволяє стверджувати, що множина  є лінійним простором над полем комплексних чисел. Звідси випливає, що можна ставити питання про розмірність цього простору, про його базиси, підпросторів.

 

2.  Лінійні перетворення (оператори) із простору V в V

 

В подальшому будемо розглядати лінійні оператори, діючі із лінійного простору  в той самий простір. Ці оператори називають також перетвореннями із  в .

Назвемо тотожнім (одиничним) оператор  такий, що для любого вектора  простору . Очевидно, , , для любих . З цього випливає, оператор  – лінійний і, тому, . Неважко упевнитися в тому, що оператор  – єдиний. Дійсно, якщо припустити що, крім тотожного оператора  з , існує ще один тотожний оператор , тоді для будь-якого  будемо мати , , очевидно, , тобто .

Введемо операцію множення операторів. Нехай  та  – два будь-яких лінійних оператора з , а  – довільний вектор простору . ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Інваріантні підпростори. Власні вектори і власні значення лінійного оператора
Просмотров:518
Описание: Інваріантні підпростори. Власні вектори і власні значення лінійного оператора Як ми вже знаємо один і той же лінійний оператор в різних базисах задається різними матрицями. Виникає питання: чи не можна знайт

Название:Офісна техніка в роботі оператора комп'ютерного набору
Просмотров:365
Описание: Курсова робота Офісна техніка в роботі оператора комп'ютерного набору План Вступ Розділ 1. Характеристика офісної техніки в роботі оператора комп'ютерного набору 1.1 Кому

Название:Автоматизация транспортировки осей колесных пар автооператором портального типа
Просмотров:393
Описание: Введение Целью курсового проектирования является разработка системы автоматизации производственного процесса, имеющего место при изготовлении или ремонте вагонов, включая кинематические схемы заданной м

Название:Оператор сотовой связи компания ОАО "Мобильные ТелеСистемы"
Просмотров:306
Описание: Академия Бюджета и Казначейства Министерства Финансов Российской Федерации кафедра "Государственное и муниципальное управление" Реферат по предмету "Экономика предприятий"

Название:Дидактичний проект підготовки робітника за фахом "Оператор ПК" з поглибленою розробкою технологій навчання по темі: "Концентратори"
Просмотров:352
Описание: КУРСОВА РОБОТА З МЕТОДИКИ ПРОФЕСІЙНОГО НАВЧАННЯ на тему: «Дидактичний проект підготовки робітника за фахом «Оператор ПК» з поглибленою розробкою технологій навчання по тем

 
     

Вечно с вами © MaterStudiorum.ru