Министерство науки и образования Украины
Сумской государственный университет
кафедра информатики
Численные методы
Курсовая работа
на тему:
“ Выбор интерполирующей функции к заданной и ее построение ” Сумы 2006
Содержание
Постановка задачи.
1. Введение.
2. Теоретическая часть.
3. Практическая реализация:
3.1 Программа на языке Pascal.
3.2 Решение в Excel.
4. Выводы.
Список использованной литературы.
Приложение.
Постановка задачи
Найти значение функции у в точке х=0.47 , используя интерполяционную схему Эйткина, проверить правильность решения с помощью кубического сплайна. Значения функции у приведены в таблице:
i 0 1 2 3 4 5 xi 0,4 0,5 0,6 0,7 0,8 0,9 yi 0,38942 0,47943 0,56464 0,64422 0,71736 0,78333 x=
0,47
Введение
Пусть на отрезке задано N точек , которые называются узлами интерполирования, и значения некоторой функции в этих точках: . Нужно построить функцию ( функцию, которая интерполирует), которая совпадала бы с в узлах интерполяции и приближала ее между ними, то есть такую, что . Геометрическая интерпретация задачи интерполяции состоит в том, что нужно найти такую кривую некоторого вида, что проходит через заданную систему точек С помощью этой кривой можно найти приближенное значение , де Задача интерполяции становится однозначной, если вместо произвольной функции искать многочлен степени не выше , который удовлетворяет условия:
.
Интерполяционный многочлен всегда однозначный, поскольку существует только один многочлен степени , который в данных точках принимает заданные значения. Существует несколько способов построения интерполяционного многочлена. Дальше мы рассмотрим основные способы подробнее.
Теоретическая часть
Интерполяционный многочлен Лагранжа
Интерполяционный многочлен Логранжа, что принимает в узлах интерполяции соответственно значений имеет вид:
(*)
С формулы видно, что степень многочлена равна , и многочлен Логранжа удовлетворяет все условия задачи интерполяции.
Если расстояние между всеми соседними узлами интерполирования одинаково, то есть , формула (*) значительно упрощается. Введем новую переменную , тогда Теперь интерполяционный полином Лагранжа имеет вид:
. (**)
Тут .
Коэффициенты , которые стоят перед величинами в формуле (**), не зависят от функции и от шага , а зависят только от величин Поэтому таблицами составленными для различных значений , можно воспользоватся при решении различных задач интерполирования для равноотстоящих узлов.
Возникает вопрос, на сколько близко многочлен Логранжа приближается к функции в других точках (не узловых), то есть на сколько большой остаток. На функцию накладывают дополнительные ограничения. А именно: предполагают, что в рассмотренной области изменения , которые содержат узлы интерполяции, функция имеет все производные до -го порядка включительно. Тогда оценка абсолютной погрешности интерполяционной формулы Логранжа имеет вид:
, (***)
где .
Интерполяционный многочлен Ньютона
Разделенными разностями называются соотношения вида:
- первого порядка:
- второго порядка:
(5.15)
…………………………………………………;
- n- го порядка:
С помощью разделенных різностей можно построить многочлен:
(5.16)
Он называется интерполяционным многочлен Ньютона для заданной функции. ............