MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Выбор и построение интерполирующей функции

Название:Выбор и построение интерполирующей функции
Просмотров:69
Раздел:Математика
Ссылка:Скачать(158 KB)
Описание: Министерство науки и образования Украины Сумской государственный университет кафедра информатики Численные методы Курсовая работа на тему: “ Выбор интерполирующей функции к за

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Министерство науки и образования Украины

Сумской государственный университет

кафедра информатики

Численные методы

Курсовая работа

на тему:

“ Выбор интерполирующей функции к заданной и ее построение ” Сумы 2006

Содержание

Постановка задачи.

1. Введение.

2. Теоретическая часть.       

3. Практическая реализация:        

3.1 Программа на языке Pascal.

3.2 Решение в Excel.

4. Выводы.         

Список использованной литературы.

Приложение.


Постановка задачи

Найти значение функции у в точке х=0.47 , используя интерполяционную схему Эйткина, проверить правильность решения с помощью кубического сплайна. Значения функции у приведены в таблице:

i 0 1 2 3 4 5 xi 0,4 0,5 0,6 0,7 0,8 0,9 yi 0,38942 0,47943 0,56464 0,64422 0,71736 0,78333 x=

0,47

 


Введение

 

Пусть на отрезке  задано N точек , которые называются узлами интерполирования, и значения некоторой функции  в этих точках: . Нужно построить функцию  ( функцию, которая интерполирует), которая совпадала бы с  в узлах интерполяции и приближала ее между ними, то есть такую, что . Геометрическая интерпретация задачи интерполяции состоит в том, что нужно найти такую кривую  некоторого вида, что проходит через заданную систему точек  С помощью этой кривой можно найти приближенное значение , де  Задача интерполяции становится однозначной, если вместо произвольной функции  искать многочлен  степени не выше , который удовлетворяет условия:

.

Интерполяционный многочлен  всегда однозначный, поскольку существует только один многочлен степени , который в данных точках принимает заданные значения. Существует несколько способов построения интерполяционного многочлена. Дальше мы рассмотрим основные способы подробнее.

 


Теоретическая часть

 

Интерполяционный многочлен Лагранжа

 

Интерполяционный многочлен Логранжа, что принимает в узлах интерполяции  соответственно значений  имеет вид:

 (*)

С формулы видно, что степень многочлена  равна , и многочлен Логранжа удовлетворяет все условия задачи интерполяции.

Если расстояние между всеми соседними узлами интерполирования одинаково, то есть , формула (*) значительно упрощается. Введем новую переменную , тогда   Теперь интерполяционный полином Лагранжа имеет вид:

. (**)

Тут .

Коэффициенты , которые стоят перед величинами  в формуле (**), не зависят от функции  и от шага , а зависят только от величин  Поэтому таблицами составленными для различных значений , можно воспользоватся при решении различных задач интерполирования для равноотстоящих узлов.

Возникает вопрос, на сколько близко многочлен Логранжа приближается к функции  в других точках (не узловых), то есть на сколько большой остаток. На функцию  накладывают дополнительные ограничения. А именно: предполагают, что в рассмотренной области  изменения , которые содержат узлы интерполяции, функция  имеет все производные  до -го порядка включительно. Тогда оценка абсолютной погрешности интерполяционной формулы Логранжа имеет вид:

, (***)

где  .

 

Интерполяционный многочлен Ньютона

 

Разделенными разностями называются соотношения вида:

- первого порядка:

 

- второго порядка:

 (5.15)

…………………………………………………;

- n- го порядка:

С помощью разделенных різностей можно построить многочлен:


 (5.16)

Он называется интерполяционным многочлен Ньютона для заданной функции. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень
Просмотров:250
Описание: Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень Ефективний шлях багаторазового зведення за модулем – використання методу Монтгомері, який було запропоно

Название:Функции сравнительного правоведения
Просмотров:64
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫКУРСОВАЯ РАБОТА на тему Функции сравнительного правоведения по дисциплине Сравнительное правоведениеКИЕВ 2011   СОДЕРЖАНИЕ Введение 1. Научная функц

Название:Функции государства в их многообразии и развитии
Просмотров:59
Описание: Содержание Введение Глава 1. Функции государства 1.1. Понятие и признаки функций государства 1.2 Классификация функций государства 1.3 Глобальные проблемы и функции государства 1.4. Эволюция функций госуд

Название:Булевы функции
Просмотров:173
Описание: 1.Основные понятия булевой алгебры Технические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математического аппарата, объектом исследования которого являются функции, приним

Название:Предмет и функции философии
Просмотров:118
Описание: Содержание Введение 1. Предмет философии. Место философии в системе наук и культуре 2. Основные разделы философии 3. Мировоззренческая, методологическая, рефлексивно–критическая и интегративная функция

 
     

Вечно с вами © MaterStudiorum.ru