Часть полного текста документа: Вычисление координат центра тяжести плоской фигуры I.Координаты центра тяжести. Пусть на плоскости Oxy дана система материальных точек P1(x1,y1); P2(x2,y2); ... , Pn(xn,yn) c массами m1,m2,m3, . . . , mn. Произведения ximi и yimi называются статическими моментами массы mi относительно осей Oy и Ox. Обозначим через xc и yc координаты центра тяжести данной системы. Тогда координаты центра тяжести описанной материальной системы определяются формулами: Эти формулы используются при отыскании центров тяжести различных фигур и тел. 1.Центр тяжести плоской фигуры. Пусть данная фигура, ограниченная линиями y=f1(x), y=f2(x), x=a, x=b, представляет собой материальную плоскую фигуру. Поверхностною плотность, то есть массу единицы площади поверхности, будем считать постоянной и равной ? для всех частей фигуры. Разобьем данную фигуру прямыми x=a, x=x1, . . . , x=xn=b на полоски ширины ?x1, ?x2, . . ., ?xn. Масса каждой полоски будет равна произведению ее площади на плотность ?. Если каждую полоску заменить прямоугольником (рис.1) с основанием ?xi и высотой f2(?)-f1(?), где ?, то масса полоски будет приближенно равна (i = 1, 2, ... ,n). Приближенно центр тяжести этой полоски будет находиться в центре соответствующего прямоугольника: Заменяя теперь каждую полоску материальной точкой, масса которой равна массе соответствующей полоски и сосредоточена в центре тяжести этой полоски, найдем приближенное значение центра тяжести всей фигуры: Переходя к пределу при , получим точные координаты центра тяжести данной фигуры: Эти формулы справедливы для любой однородной (т.е. имеющей постоянную плотность во всех точках) плоской фигуры. Как видно, координаты центра тяжести не зависят от плотности ? фигуры (в процессе вычисления ? сократилось). 2. Координаты центра тяжести плоской фигуры В предыдущей главе указывалось, что координаты центра тяжести системы материальных точек P1, P2, . . ., Pn c массами m1, m2, . . ., mn определяются по формулам . В пределе при интегральные суммы, стоящие в числителях и знаменателях дробей, перейдут в двойные интегралы, таким образом получаются точные формулы для вычисления координат центра тяжести плоской фигуры: (*) Эти формулы, выведенные для плоской фигуры с поверхностной плотностью 1, остаются в силе и для фигуры, имеющей любую другую, постоянную во всех точках плотность ?. Если же поверхностная плотность переменна: то соответствующие формулы будут иметь вид Выражения и называются статическими моментами плоской фигуры D относительно осей Oy и Ox. Интеграл выражает величину массы рассматриваемой фигуры. 3.Теоремы Гульдена. Теорема 1. Площадь поверхности, полученной при вращении дуги плоской кривой вокруг оси, лежащей в плоскости этой кривой и не пересекающей ее, равна длине дуги кривой, умноженной на длину окружности, описанной центром тяжести дуги. Теорема 2. Объем тела, полученного при вращении плоской фигуры вокруг оси, не пересекающей ее и расположенной в плоскости фигуры, равен произведению площади этой фигуры на длину окружности, описанной центром тяжести фигуры. II.Примеры. 1)Условие: Найти координаты центра тяжести полуокружности X2+Y2=a2, расположенной над осью Ox. Решение: Определим абсциссу центра тяжести: , Найдем теперь ординату центра тяжести: 2)Условие: Определить координаты центра тяжести сегмента параболы y2=ax, отсекаемого прямой, х=а (рис. ............ |