MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Высшая математика, интегралы (шпаргалка)

Название:Высшая математика, интегралы (шпаргалка)
Просмотров:77
Раздел:Математика
Ссылка:Скачать(117 KB)
Описание:Пояснение: [pic] Пусть: [pic]. Тогда: [pic] Т.е. функция [pic]не является равномерно непрерывной на множестве [pic].
Теорема 28.3: Непрерывная на отрезке функция – равномерно непрерывна на нём.
Классы и

Часть полного текста документа:

Равномерная непрерывность Определение 28.7: Функция называется равномерно непрерывной на множестве , если: . (в отличие от критерия Коши: ). Пояснение: Пусть: . Тогда: Т.е. функция не является равномерно непрерывной на множестве . Теорема 28.3: Непрерывная на отрезке функция - равномерно непрерывна на нём. Классы интегрируемых функций Теорема 28.4: Непрерывная на отрезке функция - интегрируема на нём. Теорема 28.5: Монотонная на отрезке функция - интегрируема на нём. Теорема 28.5: Если функция определена и ограничена на отрезке , и если можно указать конечное число интервалов, покрывающих все точки разрыва этой функции на . Причём общая длина этих интервалов меньше . То - интегрируема на . Замечание: Очевидно, что если - интегрируема на , а отличается от только в конечном числе точек, то - интегрируема на и . Существование первообразной Определение 28.9: Пусть - интегрируема на , , тогда: функция интегрируема на и функция называется интегралом с переменным верхним пределом, аналогично функция - интеграл с переменным нижним пределом. Теорема 28.6: Если функция - непрерывна на , то у неё существует на первообразная, одна из которых равна: , где . Замечание 1: Из дифференцируемости функции следует её непрерывность, т.е. Замечание 2: Поскольку - одна из первообразных , то по определению неопределённого интеграла и теореме о разности первообразных: . Это связь между определённым и неопределённым интегралами Интегрирование подстановкой Пусть для вычисления интеграла от непрерывной функции сделана подстановка . Теорема. Если 1. Функция и ее производная непрерывны при 2. множеством значений функции при является отрезок [a;b] 3. , то =. Док-во: Пусть F(x) есть первообразная для f(x) на отрезке [a;b]. Тогда по формуле Ньютона-Лейбница =. Т.к. , то является первообразной для функции , . Поэтому по формуле Ньютона-Лейбница имеем =. Формула замены переменной в определенном интеграле. 1. при вычислении опред. интег-ла методом подстановки возвращаться к старой переменной не требуется; 2. часто вместо подстановки применяют подстановку t=g(x) 3. не следует забывать менять пределы интегрирования при замене переменных. Интегрирование заменой переменной. а). Метод подведения под знак дифференциала Пусть требуется вычислить интеграл . Предположим, что существуют дифференцируемая функция и функция такие, что подынтегральное выражение может быть записано в виде: . Тогда: . Т.е. вычисление интеграла сводится к вычислению интеграла (который может оказаться проще) и последующей подстановке . Пример: Вычислить . . Подстановка: . б). Метод подстановки Пусть требуется вычислить интеграл , где . Введём новую переменную формулой: , где функция дифференцируема на и имеет обратную , т.е. отображение на - взаимно-однозначное. Получим: . Тогда . Т.е. вычисление интеграла сводится к вычислению интеграла (который может оказаться проще) и последующей подстановке . Пример: Вычислить . , откуда: . Интегрирование по частям. Пусть - дифференцируемые функции, тогда справедлива формула: , или короче: . Эта формула используется в тех случаях, когда подынтегральное выражение можно так представить в виде , что интеграл вычисляется проще исходного. Пример: Вычислить . Положим . Тогда . В качестве выберем первообразную при . Получим . Снова . Тогда . Окончательно получим: . Замечание 26.5: Иногда при вычислении интеграла методом интегрирования по частям получается зависимость: . ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Функции сравнительного правоведения
Просмотров:77
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫКУРСОВАЯ РАБОТА на тему Функции сравнительного правоведения по дисциплине Сравнительное правоведениеКИЕВ 2011   СОДЕРЖАНИЕ Введение 1. Научная функц

Название:Функции государства в их многообразии и развитии
Просмотров:64
Описание: Содержание Введение Глава 1. Функции государства 1.1. Понятие и признаки функций государства 1.2 Классификация функций государства 1.3 Глобальные проблемы и функции государства 1.4. Эволюция функций госуд

Название:Булевы функции
Просмотров:185
Описание: 1.Основные понятия булевой алгебры Технические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математического аппарата, объектом исследования которого являются функции, приним

Название:Предмет и функции философии
Просмотров:132
Описание: Содержание Введение 1. Предмет философии. Место философии в системе наук и культуре 2. Основные разделы философии 3. Мировоззренческая, методологическая, рефлексивно–критическая и интегративная функция

Название:Фонд обязательного медицинского страхования: структура и функции
Просмотров:244
Описание: ВВЕДЕНИЕ фонд обязательное медицинское страхование Обязательное медицинское страхование - составная часть системы социального страхования. Создание внебюджетных фондов (пенсионного, занятости, социальног

 
     

Вечно с вами © MaterStudiorum.ru