Часть полного текста документа: В современной физике есть год, который называют "годом чудес". Это 1932-й год. Одним из таких "чудес" этого года было открытие нейтрона и создание нейтронно-протонной модели атомного ядра. В результате произошло выделение из атомной физики самостоятельного, бурно развивающегося направления - ядерной физики. Ядерная физика изучает структуру и свойства атомных ядер. Она исследует также взаимопревращения атомных ядер, происходящие в результате как радиоактивных распадов, так и различных ядерных реакций. К ядерной физике тесно примыкает физика элементарных частиц, физика и техника ускорителей заряженный частиц, ядерная энергетика. Исследуя атомное ядро, ядерная физика использует различные теоретические модели, которые могут показаться противоречащими друг другу. Немецкий физик М. Борн предложил в 1936 г. гидродинамическую модель атомного ядра, согласно которой ядро уподобляется капле заряженной плотной жидкости, состоящей из интенсивно взаимодействующих между собой нуклонов (нейтронов и протонов). Как и в капле обычной жидкости, поверхность капли-ядра может колебаться, что при некоторых условиях приводит к развалу ядра. Американский физик М. Гепперт-Майер и одновременно немецкий физик И. Йенсен разработали в 1950 г. оболочечную модель атомного ядра, в которой нуклоны ядра движутся независимо друг от друга в некоем усредненном поле ядерной силы. Подобно электронам в атоме, нуклоны заполняют различные оболочки, каждая из который характеризуется определённым значением энергии. Стремясь примирить взаимно исключающие исходные положения гидродинамической и оболочечной моделей, датские физики О. Бор и Б. Моттельсон, а также американский физик Дж. Рейнуотер разработали в начале 1950-х гг. так называемую обобщенную модель атомного ядра. Согласно этой модели, ядро состоит из сердцевины - устойчивой внутренней части (нуклоны целиком заполненных оболочек) и "внешних" нуклонов, движущихся в поле, создаваемом нуклонами сердцевины. Под влиянием внешних нуклонов сердцевина ядра может деформироваться, принимая форму вытянутого или, напротив, сплюснутого эллипсоида; может испытывать колебания. Весьма важной обшивной составной частью ядерной физики является нейтронная физика. Она занимается ядерными реакциями, происходящими под действием нуклонов. Поскольку нейтрон электрически нейтрален, электронное поле ядра-мишени не отталкивает его; поэтому даже медленные нейтроны могут беспрепятственно приблизится к ядру на расстояния, при которых начинают проявляться ядерные силы. Нейтронная физика исследует также взаимодействие очень медленных нейтронов с веществом (энергия таких нейтронов порядка 0,01 эВ и меньше). Получаемые в этих исследованиях данные по рассеянию нейтронов веществом используются для выявления атомной структуры и характера движения атомов в различных кристаллах, жидкостях и отдельных молекул. Современная ядерная физика достаточно четко распадается на две органически взаимосвязанные "ветви" - теоретическую и экспериментальную ядерную физику. Теоретическая ядерная физика "работает" с моделями атомного ядра и ядерных реакций; она опирается на фундаментальные физические теории, созданные в процессе исследования физики микромира. Экспериментальная ядерная физика использует богатейший арсенал современных исследовательских средств, включая в себя ядерные реакторы (как источники мощных пучков нейтронов), ускорители заряженных частиц (как источники пучков ускоренных электронов, протонов, ионов, а также мезонов и гиперонов), разнообразные детекторы частиц, возникающих в ядерных реакциях. ............ |