MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Задача о коммивояжере и ее обобщения

Название:Задача о коммивояжере и ее обобщения
Просмотров:374
Раздел:Математика
Ссылка:Скачать(211 KB)
Описание: Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ГОУВПО «АмГУ») Факультет математики и и

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Министерство образования и науки РФ

Государственное образовательное учреждение высшего профессионального образования

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

(ГОУВПО «АмГУ»)

Факультет математики и информатики

Кафедра математического анализа и моделирования

КУРСОВАЯ РАБОТА

на тему: «Задача о коммивояжере и ее обобщения»

по дисциплине «Вариационное исчисление и методы оптимизации»


СОДЕРЖАНИЕ

Введение

1  Постановка задачи

2  Эвристические методы

2.1   Алгоритм Борувки

2.2   Алгоритм Крускала

2.3   Алгоритм Прима

2.4   Вывод

3  Генетический алгоритм

4  NP-полная задача

5  Метод ветвей и границ

6  Практическое применение задачи коммивояжер

Заключение

Библиографический список


ВВЕДЕНИЕ

В 1859 г. Сэр Вильям Гамильтон, знаменитый математик, давший миру теорию комплексного числа и кватерниона, предложил детскую головоломку, в которой предлагалось совершить «круговое путешествие» по 20 городам, расположенных в различных частях земного шара.

Гамильтонова задача о путешественнике нередко преобразуется в задачу о коммивояжере. Коммивояжер – не свободно путешествующий турист, а деловой человек, ограниченный временными, денежными или какими-либо другими ресурсами. Гамильтонова задача может стать задачей о коммивояжере, если каждое из ребер снабдить числовой характеристикой. Это может быть километраж, время на дорогу, стоимость билета, расход горючего и т.д. Таким образом, условные характеристики дадут числовой ряд, элементы которого могут быть распределены между ребрами как угодно.

Задача о коммивояжере относится к классу NP-трудных задач. Методы решения задачи о коммивояжере различны. В данной курсовой кратко рассказывается только о некоторых наиболее известных.

К эвристическим методам решения задачи коммивояжёра следует отнести «жадный» алгоритм, на каждом шаге выбирающий ребро наименьшей стоимости из множества рёбер, не нарушающих корректности решения. Эти методы имеют большую погрешность. Хорошо исследована область генетических алгоритмов, показавших свою эффективность для данной задачи, но они довольно громоздки. Метод перебора прост, но только лишь при небольшом количестве итераций.

И наиболее удобным мне кажется метод ветвей и границ. Его можно применять и при большом количестве городов.


1. ПОСТАНОВКА ЗАДАЧИ

Рис.1

Предположим, что бродячий торговец должен, покинув город, которому присвоим номер 1, объехать еще N – 1 городов и вернутся снова в город номер 1. В его распоряжении есть дороги, соединяющие эти города. Он должен выбрать свой маршрут – порядок посещения городов так, чтобы путь, который ему придется пройти, был как можно короче. Основное условие этой задачи состоит в том, что коммивояжер не имеет права возвращаться снова в этот город, в котором он однажды уже побывал. Это условие будем называть условием (α). Мы считаем, что расстояние между двумя городами – функция f(xi, xj) – определено. Разумеется, функция f(xi, xj) может означать не только расстояние, но, например, время или издержки в пути и т.д. поэтому в общем случае

 

f(xi, xj) ≠ f(xj, xi),

а функции f(xi, xi) естественно приписать значение ∞. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Пустые множества
Просмотров:633
Описание: Милюков А. М. «Доказательства эволюции» 2010 – новое платье короля После относительно продолжительного затишья в области эволюционистской критической мысли, начало 2010 года было ознаменовано появлением сетевог

Название:Задача о коммивояжере и ее обобщения
Просмотров:374
Описание: Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ГОУВПО «АмГУ») Факультет математики и и

Название:Понятие и формы множественности преступлений
Просмотров:410
Описание: План Введение 1.  Понятие и формы множественности преступлений 2.  Понятие и виды единого преступления 3.  Совокупность преступлений 4.  Рецидив преступлений 5.  Примеры практики по уголовным

Название:Оцінка трудомісткості алгоритму
Просмотров:370
Описание: Міністерство освіти і науки, молоді та спорту України Тернопільський національний технічний університет ім. І.Пулюя Кафедра комп’ютерних систем та мереж Звіт до лабораторної роботи №4 н

Название:Задача о составлении маршрута коммивояжера. Метод ветвей и границ
Просмотров:367
Описание: Задача о составлении маршрута коммивояжера. Метод ветвей и границ Введение Актуальность данной темы заключается в следующем, Для решения оптимизационных и других задач

 
     

Вечно с вами © MaterStudiorum.ru