Министерство образования и науки Украины
Донецкий Национальный университет
Кафедра теории вероятностей и математической статистики
Курсовая работа
на тему: «Законы больших чисел»
Выполнила:
студентка I курса
группа А
Полева Е. Л.
Проверила:
Гатун А. П.
Донецк-2007
Одинаково распределенные случайные величины
Для решения многих практических задач необходимо знать комплекс условий, благодаря которому результат совокупного воздействия большого количества случайных факторов почти не зависит от случая. Данные условия описаны в нескольких теоремах, носящих общее название закона больших чисел, где случайная величина к равна 1 или 0 в зависимости от того, будет ли результатом k-го испытания успех или неудача. Таким образом, Sn является суммой n взаимно независимых случайных величин, каждая из которых принимает значения 1 и 0 с вероятностями р и q.
Простейшая форма закона больших чисел - теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.
Теорема Пуассона утверждает, что частота события в серии независимых испытаний стремится к среднему арифметическому его вероятностей и перестает быть случайной.
Предельные теоремы теории вероятностей, теоремы Муавра-Лапласа объясняют природу устойчивости частоты появлений события. Природа эта состоит в том, что предельным распределением числа появлений события при неограниченном возрастании числа испытаний (если вероятность события во всех испытаниях одинакова) является нормальное распределение.
Центральная предельная теорема объясняет широкое распространение нормального закона распределения. Теорема утверждает, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин с конечными дисперсиями, закон распределения этой случайной величины оказывается практически нормальным законом.
Теорема Ляпунова объясняет широкое распространение нормального закона распределения и поясняет механизм его образования. Теорема позволяет утверждать, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин, дисперсии которых малы по сравнению с дисперсией суммы, закон распределения этой случайной величины оказывается практически нормальным законом. А поскольку случайные величины всегда порождаются бесконечным количеством причин и чаще всего ни одна из них не имеет дисперсии, сравнимой с дисперсией самой случайной величины, то большинство встречающихся в практике случайных величин подчинено нормальному закону распределения.
В основе качественных и количественных утверждений закона больших чисел лежит неравенство Чебышева. Оно определяет верхнюю границу вероятности того, что отклонение значения случайной величины от ее математического ожидания больше некоторого заданного числа. Замечательно, что неравенство Чебышева дает оценку вероятности события для случайной величины, распределение которой неизвестно, известны лишь ее математическое ожидание и дисперсия.
Неравенство Чебышева. ............