MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Знаходження власних значеннь лінійого оператора

Название:Знаходження власних значеннь лінійого оператора
Просмотров:80
Раздел:Математика
Ссылка:none(0 KB)
Описание: Міністерство освіти і науки України ФАКУЛЬТЕТ  ІНФОРМАТИКИ КАФЕДРА ІНФОРМАЦІЙНИХ УПРАВЛЯЮЧИХ СИСТЕМ ТА ТЕХНОЛОГІЙ Реєстраційний №________ Дата ___________________ КУРСОВА РОБОТА Тема: Знаход

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Міністерство освіти і науки України

ФАКУЛЬТЕТ  ІНФОРМАТИКИ

КАФЕДРА ІНФОРМАЦІЙНИХ УПРАВЛЯЮЧИХ СИСТЕМ ТА ТЕХНОЛОГІЙ

Реєстраційний №________

Дата ___________________

КУРСОВА РОБОТА

Тема:

Знаходження власних значень лінійного оператора

Рекомендована до захисту

“____” __________  2008р.

Робота захищена

“____” __________  2008р.

з оцінкою

_____________________

Підписи членів комісії


Зміст

Вступ

Теоретична частина

1. Означення і найпростіші властивості лінійних операторів

2. Матриця лінійного оператора

3. Власні вектори й власні значення лінійного оператора

Практична частина

1. Опис програми

2. Текст програми

3. Контрольний приклад

Висновок

Список літератури

 


Вступ

Власні значення грають при вивченні лінійних операторів дуже велику роль.

Нехай в дійсному лінійному просторі  задан лінійний оператор . Якщо вектор , відмінний від нуля, переводиться оператором  у вектор, пропорційний самому  ,

,

де – деяке дійсне число, то вектор  називається власним вектором оператора , а число – власним значенням цього оператора, причому, власний вектор  відноситься до власного значення .

Обертання евклідової площини навколо початку координат на кут, що не являється кратним , є прикладом лінійного оператора, що не має власних векторів. Прикладом іншого випадку є розтягнення площини, при якому всі вектори, що виходять з початку координат, причому всі нульові вектори площини будуть для нього власними; всі вони відносяться до власного значення 5. 

 


Теоретична частина

 

1. Означення і найпростіші властивості лінійних операторів

В теорії лінійних просторів та її застосування важливу роль відіграють лінійні оператори, які інакше називають лінійними перетвореннями.

Нехай – деякий векторний простір над полем .

Означення 1. Вважають, що у векторному просторі  задано оператор, якщо вказано правило (закон), за яким кожному вектору  простору  ставиться у відповідність деякий вектор  цього ж простору. Про цьому вектор  називають образом вектора , а  називають прообразом вектора .

Як бачимо, оператор у векторному просторі  – це функція, множиною відправлення і множиною прибуття якої є простір .

Означення 2. Оператор  у векторному просторі  називається лінійним, якщо він задовольняє такі умови:

Лінійні оператори в просторі  називають також лінійним перетворенням простору .

З означення 2 випливають безпосередньо такі властивості лінійних операторів:

1. Будь-який лінійний оператор  у просторі  залишає нерухомим нульовий вектор  цього простору, тобто .

2.  Всякий лінійний оператор  у просторі  протилежному вектору – будь-якого вектора , ставить у відповідність вектор, протилежний образу вектора , тобто .

3. Кожен лінійний оператор  у просторі  будь-який лінійний комбінації довільно вибраних векторів  простору  ставить у відповідність лінійну комбінацію (з тими самими коефіцієнтами) образів цих векторів, тобто .

 

2. Матриця лінійного оператора

 

Нехай – деякий лінійний оператор у просторі . Виберемо в  який-небудь базис . Оператор  відображає вектори цього базису в деякі вектори . ............




 
     

Вечно с вами © MaterStudiorum.ru