Реферат
По химии
Тема: Аммиак и аминокислоты, их роль в нашей жизни
Подготовила студентка 1курса
Кузнецова Виктория
Аминокислоты
АМИНОКИСЛОТЫ - это органические (карбоновые) кислоты, в составе которых имеется аминогруппа (— NH2).
Участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.;
дигидроксифенилаланин (ДОФА) и -аминомасляная кислота служат посредниками при передаче нервных импульсов.
Строение аминокислот
В клетках и тканях живых организмов встречается около 300 различных аминокислот, но только 20 из них служат звеньями (мономерами), из которых построены пептиды и белки всех организмов (поэтому их называют белковыми аминокислотами). Последовательность расположения этих аминокислот в белках закодирована в последовательности нуклеотидов соответствующих генов (см. Генетический код). Остальные аминокислоты встречаются как в виде свободных молекул, так и в связанном виде. Многие из аминокислот встречаются лишь в определенных организмах, а есть и такие, которые обнаруживаются только в одном из великого множества описанных организмов.
История открытия аминокислот
Первая аминокислота — аспарагин— была открыта в 1806, последняя из аминокислот, обнаруженных в белках, — треонин — была идентифицирована в 1938. Каждая аминокислота имеет тривиальное (традиционное) название, иногда оно связано с источником выделения. Например, аспарагин впервые обнаружили в аспарагусе (спарже), глутаминовую кислоту — в клейковине (от англ. gluten — глютен) пшеницы, глицин был назван так за его сладкий вкус (от греч. glykys — сладкий).
Структура и свойства аминокислот
Общую структурную формулу любой аминокислоты можно представить следующим образом: карбоксильная группа (— СООН) и аминогруппа (— NH2) связаны с одним и тем же -атомом углерода (счет атомов ведется от карбоксильной группы с помощью букв греческого алфавита — , , и т. д.). Различаются же аминокислоты структурой боковой группы, или боковой цепи (радикал R), которые имеют разные размеры, форму, реакционную способность, определяют растворимость аминокислот в водной среде и их электрический заряд. И лишь у пролина боковая группа присоединена не только к -углеродному атому, но и к аминогруппе, в результате чего образуется циклическая структура.
В нейтральной среде и в кристаллах -аминокислоты существуют как биполяры, или цвиттер-ионы.
Поэтому, например, формулу аминокислоты глицина — NH2—CH2—СООH — правильнее было бы записать как NH3+—CH2—COO–Только в наиболее простой по структуре аминокислоте — глицине — в роли радикала выступает атом водорода. У остальных аминокислот все четыре заместителя при -углеродном атоме различны (т. е. -углеродный атом углерода асимметричен). Поэтому эти аминокислоты обладают оптической активностью(способны вращать плоскость поляризованного света) и могут существовать в форме двух оптических изомеров — L (левовращающие) и D (правовращающие). Однако все природные аминокислоты являются L-аминокислотами. К числу же исключений можно отнести D-изомеры глутаминовой кислоты, аланина, валина, фенилаланина, лейцина и ряда других аминокислот, которые обнаружены в клеточной стенке бактерий; аминокислоты D-конформации входят в состав некоторых пептидных антибиотиков(в том числе актиномицинов, бацитрацина, грамицидинов A и S), алкалоидов из спорыньи и т. ............