Часть полного текста документа:Билет № 3 1. Взаимное расположение прямой и плоскости в пространстве 2. Объем призмы. 1.Три случая расположения прямой и плоскости. 1.Плоскость и прямая имеют одну оющую точку ? ?? 2.Прямая лежит в плоскости а значит имеет с ней 2 общие точки. 1.Пряммая и плоскость не имеют общих точек т.е.??? a 2.Теорема: Объем прямой призмы равен произведению площади основания на высоту. Д-во: Рассмотрим правильную 3-угольную призму АВСА1В1С1с объемом V и высотой h. Проведем такую высоту ?АВС (ВD) кот. разделит этот ?на 2 ?. Поскольку ВВ1D разделяют данную призму на 2 призмы , основания кот является прямоугольный ?ABD и ВСD. Плэтому объем V1 и V2 соответственно равны SABD ·h и SВСD ·h. По св-ву 20 объемов V=V1+V2 т.е V= SABD ·h+ SВСD ·h= (SABD+ SВСD) h. Т.о. V=SАВС·h Д-во Возьмем произвольную прямую призму с высотой h и площадью основания S. Такую призму можно разбить на прямые треугольные призмы с высотой h. Выразим объем каждой треугольной призмы по формуле (1) и сложим эти объемы. Вынося за скобки общий множитель h, получим в скобках сумму площадей оснований треугольных призм, т. е. площадь S основания исходной призмы. Таким образом, объем исходной призмы равен произведению Sh. Теорема доказана. Рассмотрим случай , когда призмая является частью параллелепип-ида. Диогональное сечение делит параллелепипед на 2 равные треугольные призмы. Так как Sпол = 1//2 ab то S?=ab =>V?= Sh ч.т.д. Билет №5 1. Перпендикуляр к наклонной плоскости(формулировки, примеры) 2. Объем цилиндра. 1.Рассмотрим пл ? и т А, не лежащую в этой плоскости. Проведем через т А прямую,? к пл ?, и обозначим букв H т пересечения этой прямой с пл ? .Отрезок АН называется, ? проведенным из т А к пл ?, a т Н - основанием ?. Отметим в пл ? какую-нибудь т М,отличную от Н, и проведем отр AM.Он называется наклонной, про-вед из т А к пл ? , а т М - основанием наклонной. Отрезок НМ наз-ывается проекцией наклонной на пл ?. Сравним ? АН и наклон-ную AM: в прямоугольном ?АМН сторона АН - катет, а сторона AM - гипотенуза, поэтому АН из всех расстояний от т А до различных т пл ? наименьшим является расстояние до т H. Это расстояние, т. е: длина ?, проведенного из т А к пл ? , называется расстоянием от т A до пл ? Замечаиия. 1. Если две плоскости параллельны, то все точки одной плоскости равноудалены от другой плоскости. 2. Теорема. Объем цилиндра равен произведению площади основания на высоту. Д-во. Впишем в данный цилиндр Р радиуса r и высоты h правильную n-угольную призму Fn а в эту призму впишем цилиндр Рп . Обозначим через V и Vn объемы цилиндров Р и Рп, через rп - радиус цилиндра Рп. Так как объем призмы Fn равен Snh, где Sn- площадь основания призмы, а цилиндр Р содержит призму Fn , кот в свою очередь , содержит цилиндр Рп , то Vn? n>? Билет № 6 1. Расстояние между скрещивающимися прямыми (формулировки, примеры) 2. Объем конуса. Расстояние между одной из скрещивающихся прямых и плоскостью , проходящей через другую прямую параллельную первой , называется расстояни6е между скрещивающимися прямыми. Если две прямые скрещиваются то через каждую из них проходит плоскость параллельная другой прямой , и при том только одна. 2 Теорема. Объем конуса равен одной трети произведения площади основания на высоту. Д-во Рассмотрим конус с объемом V, радиусом основания R, высо-той h и вершиной т О . Введем ось Ох (ОМ). ............ |