А.Б.Рубин, О.Р.Кольс, Т.Е.Кренделева и др.
Разнообразие живых систем во многом определяется многообразием структуры и функции клеточных мембран. Они не только формируют клетку и внутриклеточные структуры, отделяют клетку от внешней среды, защищают ее от проникновения патогенных и чужеродных соединений, но и играют роль селективного, тонко регулируемого, барьера. Кроме того, мембраны — ключевой элемент в генерации электрических импульсов, осуществлении межклеточных контактов, преобразовании и запасании в форме АТФ энергии света и окислительно-восстановительных реакций, а также в регуляции процессов секреции, повреждения и старения клетки. Мембранные рецепторы обеспечивают восприятие света, химических медиаторов, механических стимулов, температуры, электрического поля и др. Чем меньше размеры клеток, тем больше их удельная поверхность и тем более важную роль играют мембраны в жизнедеятельности клетки. Все эти процессы и явления, механизмы их взаимодействия и регуляции составляют важный раздел современной биофизики клетки.
Первичные физико-химические молекулярные процессы
На кафедре проводятся исследования процессов генерации и проведении возбуждения в нервных клетках (нейрон, глиальная клетка и аксон). Изучается состояние плазматических мембран и основные процессы ионного транспорта. Выявлены изменения ряда параметров, характеризующих состояние плазматической мембраны (мембранный потенциал, содержание мембраносвязанного Са2+ , ритмическое возбуждение), субклеточных органелл (потенциал внутренней мембраны митохондрий, содержание восстановленных флавопротеинов, вязкость мембран) и цитоплазмы (изменение показателя преломления) пейсмекерного нейрона при действии нейромедиаторов. Процессы перераспределения Са2+ между плазматической мембраной и внутриклеточными органеллами в пейсмекерном нейроне исследуют при термо-, хемо- и механостимуляции локализованных в коже экстерорецепторов и при воздействии нейромедиаторов и NO на нейрон в составе ганглия. Установлено, что изменения электрической активности нейронов при стимуляции экстерорецепторов и действии нейромедиаторов сопровождаются перераспределением Са2+ в цитоплазме: десорбцией Са2+ , связанного на плазматической мембране клетки, увеличением концентрации Са2+ в цитоплазме, входом Са2+ в митохондрии и стимуляцией работы электрон-транспортной цепи, а также связыванием Са2+ субклеточными структурами и регулярными изменениями оптической плотности цитоплазмы.
Развиваемое направление непосредственно связано с нейрофизиологией и физиологией крови, цитологией, а также нейрохимией, молекулярной биологией и моделированием. Эти работы имеют важное практическое применение в рамках медицинской биофизики. Основным подходом данных исследований является работа на нативных (то есть находящихся в природном состоянии) функционирующих объектах — изучение биоэлектрогенеза, переноса кислорода эритроцитами и др.
Применяются микроэлектродные методы («пэтч-клямп»), методы микроскопии (флуоресцентная микроскопия, спектроскопия комбинационного рассеяния, интерференционная микроскопия, конфокальная микроскопия), а также радиоспектроскопия (ЭПР, ЯМР) и изотопные методы.
Мембранные процессы в растительной клетке
Работы нацелены на изучение электрохимических и фотобиологических процессов, протекающих в хлоропластах и на плазмалемме клетки в индукционный период фотосинтеза и на стадии стационарного фотосинтеза. ............