Гомелькая научно-практическая конференция учащихся по естественно-научным направлениям "Поиск"
Государственное учреждение образования
"Гимназия имени Я. Купалы"
Учебно-исследовательская работа
Фигуры постоянной ширины. Треугольник Рело
Ученика 11 класса
Гимназии имени Я.Купалы
Кутуева Владимира Вячеславовича
Научный руководитель – учитель
математики высшей категории
Гимназии имени Я.Купалы
Чак Елена Николаевна
Мозырь
Оглавление
Введение
1. Диаметр фигуры
2. Фигуры постоянной ширины
3. Кривые постоянной ширины и их свойства
4. Треугольник Рело
4.1 Исторические сведения
4.2 Очертание четырёхугольника
4.3 Движение вершины и центра треугольника Рело
4.4 Площадь треугольника Рело
5. Применение треугольника Рело
5.1 Применение в некоторых механических устройствах
5.2 Применение в автомобильных двигателях
5.3 Применение альтернативных видов топлива РПД
5.4 Применение треугольника Рело в грейферном механизме в кинопроекторах
Заключение
Литература
Введение
Вопрос рассмотрения и исследования характерных точек и линий треугольников возникла, как из научного любопытства, так и из чисто практических целей. Если в древние времена наиболее широко применялся на практике прямоугольный треугольник Пифагора, то в наше время наибольший интерес вызывают необычные свойства треугольника Рело (Reuleaux Franz, 1829–1905).
Моя работа посвящена рассмотрению основных свойств фигур постоянной ширины. Вообще, мало кто знает, что такое диаметр, ширина фигуры. Может показаться, что круг является единственной выпуклой фигурой, у которой ширина в любом направлении одна и та же: она равна диаметру круга. Однако это не так: существует множество фигур постоянной ширины, т.е. таких выпуклых фигур, у которых во всех направлениях ширина одинакова. Простейшим примером является треугольник Рело. В своей работе я доказываю, что из всех фигур постоянной ширины треугольник Рело имеет наименьшую площадь.
Цель моей работы - изучить основные свойства фигур постоянной ширины, историю изобретения, рассмотреть области применения фигур постоянной ширины и изучить их свойства, доказать, что из всех фигур постоянной ширины треугольник Рело имеет наименьшую площадь.
Для этого поставлены следующие задачи.
Ø Познакомиться с историей изобретения;
Ø Рассмотреть и изучить свойства фигур постоянной ширины;
Ø Доказать, что из всех фигур постоянной ширины треугольник Рело имеет наименьшую площадь;
Ø Выявить и рассмотреть открытые проблемы и задачи, связанные с треугольником Рело;
Ø Выяснить области применения треугольника Рело.
Для реализации цели и задач исследования я использовал следующие методы: Теоретический анализ литературы по исследуемой теме. ............